Appendix N – Water Resources

Wetland Delineation Report

Kalamazoo-Battle Creek Airport

Runway 17/35 Extension and Taxiway Improvements

Report prepared for Kalamazoo County, Michigan

June 2020

Table of Contents

		Page
1.	Inti	oduction1
2.	Me	thods3
3.	Re	sults and Discussion5
	Α.	Site Description5
		 (1) Soils Mapping
		(3) Aquatic Resources
		(4) Antecedent Climatic Conditions(5) Historic Aerial Photograph Review7
		(6) Atypical Conditions Analysis
	В.	Findings
		 (1) Wetlands
	C.	Uplands
		 (1) Area A
	D.	Summary
4.	Со	nclusions21
5.	Ce	rtifications and Limitations22
6.	Ref	ferences

Appendices

- A Project Location and Topography Map
- B Detailed Topographic, FEMA Floodplain, and NRCS Soils Maps
- C Previous Wetland Mapping
- D WETS Analysis and Climatic Data
- E Historic Aerial Imagery
- F Wetland Boundary Maps
- G Data Sheets
- H Field Photographs
- I Delineator Qualifications

Tables

1	Summary of Soils in Area of InterestPage 6
2	Summary of Delineated Wetlands within the Area of Interest. Page 11
3	Plant Species found in uplands within Area A Page 19
4	Plant species found at intersection of Romence and Sprinkle Roads Page 20

1. Introduction

The Kalamazoo/Battle Creek International Airport (AZO or Airport) is classified by the Federal Aviation Administration (FAA) as a non-hub, commercial service airport that serves the areas of Kalamazoo and Battle Creek and surrounding communities in southwest Michigan. Kalamazoo County owns and operates the Airport covering approximately 806 acres. The Airport is located within the city limits of Kalamazoo in Kalamazoo County, although the boundary between the City of Kalamazoo and the City of Portage runs adjacent to its southern and western borders.

The Airport is at the intersection of Interstate 94 and East Kilgore Road. The northern half of the Airport is surrounded by single-family residences and a mix of commercial and general industrial land uses. On the south, the Airport is bordered by primarily general industrial and commercial uses consisting of Pfizer Pharmaceutical directly south, Mann+Hummel on the southeast, and the Air Zoo Aviation Museum on the west. The southwest portion of Airport property holds several open fields and just outside of Airport property on the southeast is a County-owned parcel of undeveloped land. The Airport property spans two watersheds: the Portage Creek subwatershed (HUC 12: 040500030604) and the Davis Creek-Kalamazoo River subwatershed (HUC 12: 040500030606), both parts of the Spring Brook-Kalamazoo River Watershed. A project location map is presented in Appendix A.

The airfield at AZO consists of three runways and supporting taxiways. Runway 17/35 is oriented in a north-south direction, is 6,502 feet long and 150 feet wide, and is the primary runway. Runway 5/23 is 3,438 feet long and 100 feet wide, oriented in a northeast-southwest direction, and is the primary crosswind runway. Runway 9/27 is 2,800 feet long and 60 feet wide, oriented in an east-west direction, and serves as a secondary crosswind runway.

In addition to the three runways, the Airport has many airside and landside assets that include parallel taxiways, connector taxiways, aprons, navigational aids (NAVAIDs), hangars, a passenger terminal building, an air traffic control tower (ATCT), and four fixed based operators (FBOs). FBOs provide fueling, aircraft maintenance, and other important ground services.

As identified in previous planning documents (2013 Master Plan Update and the 2017 Runway Incursion Mitigation (RIM) Study), the Airport has a demonstrated need for a longer primary runway to meet current and future user demand and to also correct taxiway geometric deficiencies. Major development items include the following:

- Meet the operational demands of existing and projected aircraft by providing additional runway length that meets FAA design standards
- Improve airfield movement by correcting geometry deficiencies associated with the intersection of Taxiway C and Runway 17

In support of an environmental assessment for the extension of Runway 17/35, a wetland delineation was conducted by Mead & Hunt, Inc. (Mead & Hunt) within an Area of Interest (AOI) covering three separate areas over two field visits on June 6-7, 2019 and August 19-21, 2019. The AOI comprises

246.4 acres located in Sections 1, 2, 11, and 12, Township 3 South, Range 11 West and Section 35, Township 2 South, Range 11 West, Kalamazoo County, Michigan. A total of seven wetlands were identified within the AOI.

This report summarizes the results of the wetland delineation. Delineator qualifications are provided in Appendix I. Mead & Hunt staff who performed the wetland delineation are:

• Brauna Hartzell, BS Biological Science, Florida State University, 1982; MS Environmental Monitoring, University of Wisconsin-Madison, 1994; 17 years wetland delineation practice.

2. Methods

The wetland determination made use of available resources to provide context and background information and to assist in the field assessment including:

- Kalamazoo County 2-foot elevation contour data obtained from Kalamazoo County GIS web site accessed at https://www.arcgis.com/apps/webappviewer/index.html?id=659542cd5d0c47ce9b8ad8c623499b81.
- U.S. Department of Agriculture Natural Resources Conservation Service (NRCS) soil survey, Web Soil Survey. Accessed at <u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx.</u>
- U.S. Fish and Wildlife National Wetland Inventory (NWI) Wetlands Mapper. Accessed at https://www.fws.gov/wetlands/data/mapper.html.
- Michigan Department of Environment, Great Lakes, and Energy (EGLE), Wetlands Map Viewer. Accessed at <u>https://www.mcgi.state.mi.us/wetlands/mcgiMap.html#</u>.
- 2016 National Wetland Plant List (Lichvar, R.W., D. L. Banks, W. N. Kirchner, and N. C. Melvin, 2016).
- Aerial photography from the following sources:
 - Kalamazoo County Parcel Viewer, City of Kalamazoo and City of Portage mapping sites.
 Accessed at <u>https://www.kalcounty.com/planning/gis.htm</u>
 - USDA-FSA National Agriculture Imagery Program (NAIP). Accessed as a GIS map service at <u>https://gis.apfo.usda.gov/arcgis/rest/services</u>
 - o Google Earth

The field methods used conform to the Routine Onsite Method of the *1987 U.S. Army Corps of Engineers' (USACE) Wetland Delineation Manual*, as enhanced by the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral/Northeast Region* (U.S. Army Corps of Engineers, 2012). Soil characteristics were examined by digging pits with a 16-inch tile spade and hydrologic indicators were visually assessed. Soil pits were left open for a minimum of 15 minutes to adequately assess the water table. Munsell Soil Color charts were used to determine the hue, value, and chroma for the matrix and any redoximorphic features in each soil layer.

Vegetation was documented on Northcentral/Northeast Regional data forms. Percent cover of each species in each stratum was estimated. The herbaceous stratum was sampled within a 5-foot radius plot; a 15-foot radius plot for the shrub/sapling stratum; and a 30-foot radius plot for the tree and woody vine stratum. The 2016 National Wetland Plant List (Lichvar, R.W., et al. 2016) was used to determine the wetland indicator status for each species and the 50/20 rule was applied to determine dominance.

Antecedent precipitation was assessed following procedures developed by the NRCS. Precipitation data three months prior to fieldwork was compared to 20-year precipitation averages (1999-2019) to determine if hydrologic conditions were normal, wetter, or drier than normal for the area.

All area within the AOI was examined. A total of 12 data points— six in uplands and six in wetlands were established to characterize the range of soil, vegetation, and hydrologic conditions. Wetland boundary points were indicated by wire pin flags placed approximately 25-50 feet apart. These sampling points and wetland boundary flags were surveyed with a Trimble Geo7X capable of sub-meter accuracy and mapped using Geographic Information System (GIS) software. The wire pin flags were removed from active airfield areas after survey so that mowing operations would not be impacted.

The following appendices are included with this report:

- Appendix A Project Location and Topography Map
- Appendix B Detailed Topographic Map, FEMA Floodplain, and NRCS Soils Map
- Appendix C Previous Wetland Mapping
- Appendix D WETS Analysis and Climatic Data
- Appendix E Historic Aerial Imagery
- Appendix F Wetland Boundary Maps
- Appendix G Data Sheets
- Appendix H Field Photographs
- Appendix I Delineator Qualifications

3. Results and Discussion

A. Site Description

The AOI covers approximately 246.4 acres on Airport property. The AOI is split into three sections. Area A comprises about 12 acres north of East Kilgore Road. Areas B and C are situated at the runway ends: approximately 104.1 acres at the Runway 17 end and 130.34 acres at the Runway 35 end.

A watershed divide occurs along the western side of the Airport with most of the airport property falling within the Davis Creek-Kalamazoo River subwatershed. A small portion of the western side of the Airport falls within the Portage Creek subwatershed. Drainage from the northern end of the Airport is directed to the east toward the Davis-Olmstead Drain. See Appendix A for the Project Location Map.

The airfield is relatively flat with little elevation change over the active airside areas. Topography within the active airfield varies from a high of about 870 ft (NAVD 1988) near the terminal and associated parking lot to about 840 ft at the eastern boundary of Airport property. From south to north along primary Runway 17/35, the topography remains constant at about 854 ft. Topographic mapping (contour interval 2-foot) from Kalamazoo County is presented in Appendix B.

North of Kilgore Road is an Airport-owned triangular-shaped parcel (Area A) underlying the Runway 17 Runway Protection Zone (RPZ). A large berm parallels East Kilgore Road, the southern boundary of this parcel, and rises 15-20 feet from the surrounding flatter areas on either side. The berm is dominated by mature box elder. Areas north of the berm contain scattered copses of trees intermixed with old field vegetation.

Nearly all infield areas consist of grasses and forbs and are mown on a regular basis. At the time of field work adequate regrowth was observed, making upland vegetation identifiable in most cases. Upland areas at the Runway 17 end (Area B) were dominated by a mix of introduced grasses and common forbs consisting of Kentucky blue grass, orchard grass, white and red clover, English plantain, Bird's-foot trefoil, chickweed, dandelion, Canada thistle, and yarrow. The dominant upland species found at the Runway 35 end (Area C) included a similar grass and forb assemblage: orchard grass, Kentucky blue grass, spotted knapweed, dandelion, white and red clover, Canada thistle, Bird's-foot trefoil, and English plantain.

A north-south oriented railroad forms the eastern boundary of the airfield. Area C extends to the east of the railroad in the southeast corner of the airfield and contains parts of three parcels: a large vacant County-owned parcel covered by old field vegetation, the Mann+Hummel south commercial property containing a large warehouse and parking area, and a vacant parcel owned by the City of Portage. The County-owned parcel is fairly flat and is a former tree plantation consisting of scattered spruce and white pine. The western half of the City of Portage parcel is tree-covered while the eastern half is vacant and covered by old field vegetation. To the north of the City of Portage parcel is another parcel owned by Mann+Hummel. An access road spans the City of Portage parcel and connects the two Mann+Hummel properties, splitting the City of Portage parcel in half.

(1) Soils Mapping

The majority of land within the AOI (88.5%) is covered by three non-hydric soil units – two units of Kalamazoo loam (KaA and KaB), and Urban land-Kalamazoo complex (UkB). The Kalamazoo series consists of very deep, well drained soils formed in loess-influenced loamy outwash overlying sand, loamy sand, or sand and gravel outwash on outwash plains, terraces, valley trains, and low-lying moraines. Typical soil profiles of the Kalamazoo series consist of dark grayish brown (10YR 4/2) loam over dark yellowish brown (10YR 4/4) loam to 16 inches in depth. These soil units are rated as non-hydric.

Soils mapped as a complex of urban land and Kalamazoo loam make up the largest component (77.5%) of the soils within the AOI. A typical profile is unavailable for this map unit. This soil unit is rated as non-hydric.

Two areas of Adrian muck are mapped with the AOI, a small area within Area B and a larger mapped unit within Area C. The Adrian series consists of very deep, very poorly drained soils formed in herbaceous organic materials over sandy deposits on outwash plains, lake plains, lake terraces, floodplains, moraines, and till plains. The Adrian series soil profile is typified by black (N 2.5/), very dark brown (10YR 2/2) or black (10YR 2/1) rubbed muck (sapric materials) to 27 inches in depth on slopes of 0 to 1 percent. This soil unit is rated as hydric.

Soils present within the AOI are summarized in Table 1. Soils rated as hydric are bolded in the table below. Soils mapping for the AOI is presented in Appendix B.

Map unit symbol	Map unit name	Percent of AOI	Primary Landform	Hydric Rating (Percent)
Ad	Adrian muck, 0 to 1 percent slopes	11.5	Depressions on outwash plains, depressions on moraines on outwash plains, Glacial drainage channels, Outwash plains, nearshore zones (relict)	Yes (100)
KaA	Kalamazoo loam, 0 to 2 percent slopes	5.5	Outwash plains, outwash terraces	No (0)
KaB	Kalamazoo loam, 2 to 6 percent slopes	5.5	Outwash plains, outwash terraces	No (0)
UkB	Urban land-Kalamazoo complex, 0 to 6 percent slopes	77.5	Outwash plains, outwash terraces	No (0)

Table 1.	Summary of	Soils in Area	of Interest
----------	------------	---------------	-------------

(2) **FEMA Floodplains**

The airport property is mapped entirely within Zone X (Area of Minimal Flood Hazard). To the west of the Airport, the Portage Creek floodplain flows to the south. To the east, the floodplain of the Davis-Olmsted drain is shown as an area of Zone A. This drain receives drainage flows from the Airport via culverts under the railroad. FEMA floodplain mapping is presented in Appendix B.

(3) Aquatic Resources

The National Wetland Inventory (NWI) indicates two areas of mapped wetlands within the AOI. A complex of wetlands to the west of the Davis-Olmsted Drain mapped as emergent, seasonally flooded, and partially drained/ditched (PEM1Cd) or emergent, semi-permanently flooded (PEM1F). Another area of emergent, seasonally flooded (PEM1C) wetland is mapped within Area C to the east of the railroad. No wetlands are mapped for the north portion of the AOI (Area A).

The Michigan Department of Environment, Great Lakes, and Energy (EGLE) Wetlands Map Viewer also shows mapped wetlands in similar areas with the extension of wetland mapping to the west across the railroad track near the south end of Airport property. Previous wetland mapping is presented in Appendix C.

(4) Antecedent Climatic Conditions

An assessment of antecedent climatic conditions was made using precipitation data for the three months prior to field work on both site visits. This analysis indicated that climatic conditions were wetter than normal range for both the June and August 2019 field visits (see Appendix D).

August of 2019 was a dry month with a total of 1.73 inches of rain for the month in comparison to a normal of 3.70 inches. The day before the August site visit, approximately 0.3 inches of rain fell on site. One day prior to the June 2019 site visit, approximately 0.43 inches of rain fell on site. Precipitation data for June and August are presented in Appendix D.

(5) Historic Aerial Photograph Review

Aerial photographs from 1938, 1950, 1960, 1964, 1974, 1981, 1989, 1997, 2000, 2002, 2004, 2006, 2007, 2009, 2013, 2016, 2017, and 2018 were reviewed to assess areas within the AOI for wet signatures. These photos were accessed from the City of Portage GIS Mapping site at https://www.portagemi.gov/177/GIS-City-Maps and are presented in Appendix E. These images cover Areas B and C of the AOI. Google Earth images from 1999, 2003, 2006, and 2011 covering Area A supplement images available from the City of Portage's web site, and are also presented in Appendix E.

Area A

The earliest image that covers the whole of Area A comes from 1999. This image shows the berm along East Kilgore Road in place with some tree coverage and a line of trees running along the I-94 right-of-way. The rest of the field appears to be fallow with some isolated trees present. These conditions appear little changed until 2009 when this line of trees along I-94 has been removed.

Since 2009 isolated trees and small copses have begun to fill in the fallow field as well as along the berm. The 2011 image shows a circular-shaped copse of trees in the northwest corner of Area A, the berm covered by trees, and scattered trees throughout the field. In the most recent image from 2018, the eastern end of the berm has been cleared of trees, directly in line with the Runway 17 end, likely for the purposes of removing obstructions to the approach.

Area B

The area at the north end of the Airport was primarily in agricultural use in 1938 and by 1950, Runway 5/23 was constructed. In both photos from these years, three small depressional wetlands are visible in the southeast corner of the Area B boundary. By 1960, the runway safety area has been graded but surrounding lands are still being farmed. The initial construction of Runway 17/35 has been completed by 1964 which was extended to its current configuration by 1981, and surrounding lands have been taken out of agricultural production. The depressional wetlands and surrounding area in the southeast corner of Area B remains stable with consistent ponded or saturated conditions seen in photos taken in 1964, 1974, 1981, and 1989. In the 1989 photo, it appears the culverts now are transporting flows to the wetland area in the southeast corner of Area B.

By 1997, an apron has been constructed next to the taxiway at the end of Runway 17 along with a ditch that skirts the edge of the concrete. Drainage from this ditch flows northeast around the end of the runway and then appears to be directed back to the southeast. By 2004, the Runway 17 RSA has been graded and a portion of the drainage ditch has been piped under the RSA. Wetland area in the southeast corner shows isolated trees but by 2007 only the Central drainage of this area has a concentration of woody vegetation, conditions which continue to the present.

Area C

Area C was primarily in agricultural uses in 1938, the earliest photo is this series. A large expanse of low-lying area apparently covered by herbaceous vegetation straddles a north-south oriented road passing through the area which later was converted to a railroad corridor. Several small copses of trees are also present at this time. In 1950 a similar pattern of land use is seen but by 1960 woody species are encroaching on the edges of the low-lying area to the west of the railroad as well as in the central portion on the east side.

Between 1960 and 1964, Runway 17/35 was constructed, and the approach lighting system installed with an associated access road extending to the south. The railroad has replaced the former north-south road and provides access to developing commercial parcels to the south. Woody encroachment is seen across the whole low-lying area in 1964. By 1974, the western side of the depressional area within the airfield has been cleared of woody vegetation while the eastern side remains unaffected.

By 1974, a small storage building has been constructed just west of Sprinkle Road. The 1981 aerial shows further expansion of this building complex while fields to the north and south are being cropped. The depressional area is now smaller in size and covered by woody vegetation to the east of the railroad; the west side on the airfield is showing signs of regrowth of woody vegetation. It is unknown whether the field to the east of the depression was tiled to support agricultural activities.

By 1997, a tree farm has been planted in the field to the south of the Mann+Hummel property whose facilities have expanded again to include two large warehouses. The depressional area to the east of the railroad appears covered by trees while the on-airfield portion has been cleared.

By 2002, the farm field to the north of the Mann+Hummel property appears to have been left fallow and remains in pasture-type vegetation to the present time. Clearing of the east side of the depression appears to have occurred between 2002 and 2004 with a few trees left on the east boundary of Area C. The west side on the airfield shows signs of grading and filling.

Between 2004 and 2006, Runway 17/35 was extended with further filling and grading at this end of the airfield. The east side of the depression appears to be covered with herbaceous vegetation.

The railroad spur connecting the Mann+Hummel property to the railroad has been constructed by 2013 along with a small detention area just north of the spur. Trees have once again begun to overtake the depressional area and by 2016 an access road between the two Mann+Hummel properties skirts the edge of the depression through the fallow lot.

(6) Atypical Conditions Analysis

The Airport has a long history within the City and County of Kalamazoo, serving the community since 1928. Commercial airline service was begun in 1944 and increased passenger demand over the years has led to runway extensions, instrument upgrades, and terminal expansions. Within airport property, construction over the Airport's history has affected many areas on the landscape which have experienced some or all of the following disturbances:

- Grading, filling, mixing, transportation, and compaction of native soils.
- Introduction of cool-season turf grasses.
- Changes to topography and drainage.
- Substitution of pipe drainage for natural sheet flow in some areas.
- Regular mowing of most airport property, which encourages the growth of grass species over forbs.

Within the AOI, though, normal circumstances were considered to be present due to the long period of time since construction and that regular vegetation maintenance is largely confined to upland areas. Soils were found to be intact at sampling points and vegetation regrowth at the time of field work was sufficient at most sampling points to make plant identification reliable.

B. Findings

(1) Wetlands

A total of seven wetlands were delineated within the overall AOI. No wetlands were delineated in Area A north of East Kilgore Road. Within Area B of the AOI, Wetlands 1A, 1B, and 2 are associated with drainage features and are located on the north part of the airfield near the Runway 17 end.

Wetlands 3 and 6 are located on the eastern side of Area B southeast of the Runway 23 end. Several National Wetland Inventory (NWI) wetlands are mapped within this complex (see Appendix C). This wetland complex is fed by four culverts and consists of three drainages: the South, Central, and North drainages as shown on Wetland maps presented in Appendix F. No culvert exiting to the

Central drainage was located at the western end during field work. Standing water was present throughout the wetland complex. Drainage from the complex is presumed to exit Airport property under the perimeter road and the railroad at the eastern end of the South drainage.

Wetland 3 is a diverse mix of trees, shrubs, and herbaceous vegetation. The Central drainage is dominated by a woody assemblage of black willow, box elder, cottonwood, red osier dogwood, peach-leaf, and sandbar willow. The herbaceous vegetation of the South drainage is dominated by sedges (*Carex hystericina, C. vulpinoidea, C. crinita, C. scoparia*), woolgrass and dark-green bulrush, purple loosestrife, cattail, vervain, soft-stem bulrush, soft rush, buttonbush, and elderberry. The North drainage was dominated by herbaceous vegetation with a few black willow trees at the eastern end. Vegetation consisted of woolgrass, dark-green bulrush, soft rush, reed canary grass, common spike-rush, straw-colored flat sedge, and cattail.

Wetland 6, also shown as an area of mapped NWI wetland, is further west of the South drainage of Wetland 3 and is at the bottom of a depressional landform. Wetland 6 receives flows from a culvert approximately 10 feet higher in elevation to the west; these flows eventually drain to the west end of Wetland 3's South drainage. These two wetlands are separated by an area of upland lacking hydrophytic vegetation.

Wetlands 4 and 5 are found within Area C of the AOI and are located on the eastern side of the railroad. Wetland 4 is directly behind the Mann+Hummel facility and is a detention area receiving flows from a culvert on the southeast side of the depression as well as runoff from the surrounding slopes. The topography transitions over steep grades to the embankments of the railroad grade on the west and a railroad spur on the south and east.

Wetland 5 is a small depression found within an area previously mapped on the NWI as an emergent wetland (PEM1C). The larger area between the railroad and a connecting road between the two Mann+Hummel facilities within which Wetland 5 is located is covered by an even-age stand of primarily sweet and black cherry trees (*Prunus avium:* FACU and *P. serotina:* FACU). The understory is dominated by pokeweed (*Phytolacca americana:* FACU), burnweed (*Senecio hieraciifolius:* FACU), greenbrier (*Smilax rotundifolia:* FAC), three-seeded mercury (*Acalypha rhomboidea:* FACU), and jumpseed (*Persicaria virginiana:* FAC). Soils mapping shows this area mapped as Adrian muck, a hydric soil unit. Field observations including numerous 20 – 22-inch-deep test pits throughout the area found no presence of or primary indicators of wetland hydrology in the black (N 2.5/ or 10YR2/1) dry crumbly soils.

The depressional area surrounding Wetland 5 has had a long history (see Historic Aerial Review in **Section 3.A.5** above for discussion) of modification beginning with the construction of a road splitting this area in two sometime before 1938 which later became the bed for the railroad. Later construction of buildings and associated grading, conversion to agriculture, woody encroachment, filling and grading on the west side due to runway extensions, and construction of an access road on the east side have resulted in significant hydrological alterations to this area. Vegetation is now dominated by facultative upland tree species. No evidence of culvert inputs was found during field

work, leaving surface runoff and precipitation as the only sources of hydrology to the area which presently does not support hydrophytic vegetation.

Wetland boundary maps with sampling point locations are presented in Appendix F followed by data sheets and field photographs in Appendices G and H, respectively. Table 2 summarizes the delineated wetlands which are described in the **Site Descriptions** sections below.

Wetland	NWI Type	Dominant Vegetation	Total Area within AOI (Acres)	Total Area within AOI (Sq. Ft)
1A	PEM	Phalaris arundinacea (FACW), Solidago gigantea (FACW)	0.214	9,309.243
1B	PEM	Phalaris arundinacea (FACW), Symphotrichum puniceum (OBL), Solanum dulcamara (FAC)	0.009	406.521
2	PEM	Carex vulpinoidea (OBL), Solidago gigantea (FACW), Acer negundo (saplings) (FAC)	0.030	1,299.337
3	PEM/PSS	Salix nigra (OBL), Eleocharis palustris (OBL); Salix x fragilis (FAC), Cornus alba (FACW), Phalaris arundinacea (FACW), Symphotrichum lanceolatum (FACW), Geum aleppicum (FAC), Vitis riparia (FAC)	3.470	151,147.974
4	PEM	Typha angustifolia (OBL), Eleocharis palustris (OBL), Salix interior (FACW)	0.171	7,468.824
5	PEM	Persicaria maculosa (FAC)	0.056	2,423.705
6	PEM	Phalaris arundinacea (FACW), Persicaria maculosa (FAC), Cyperus strigosus (FACW)	0.056	2,455.372
Total			4.006	174,510.975

Table 2. Summary of Delineated Wetlands within the Area of Interest

Site Descriptions (a)

Wetland 1A	
Site Information	
Sampling Date	6/7/2019
Delineated Type	PEM
Wetland Description	Wetland 1A is a long swale adjacent to a section of closed pavement near the Runway 17 end. Two culverts drain to this swale - a temporary 12 inch culvert on the south end draining northward and one large 36 inch culvert carrying flows from the west. The swale runs eastward along the north edge of the pavement then northward to a large culvert that drains eastward under the RSA, connecting to Wetland 1B. Standing water was present at the western end of Wetland 1A. Saturation and drift deposits were noted at the wetland sampling point while a 1-2 foot change in elevation is seen along the length of the swale in transition to uplands. The swale bottom is rip-rapped at the north end. The swale topography continues further north to a vacated culvert. This area was dry and appeared to be inactive.
Mapped NWI Type	Not mapped
Mapped Soil Type/ Hydric Rating	Urban land-Kalamazoo complex, 0 to 6 percent slopes (UkB) (Non-Hydric)
Map Reference*	Map 1
Photo Numbers**	Photos 3 - 8
Associated Data Pts***	DPs 1 - 2
Wetland Criteria	-
Dominant Vegetation	Phalaris arundinacea (FACW), Solidago gigantea (FACW)
Hydric Soil Indicators	Redox Dark Surface (F6)
Hydrology Indicators	Saturation (A3), Drift Deposits (B3), Saturation Visible on Aerial Imagery (C9), Geomorphic Position (D2), FAC-Neutral (D5)
Boundary Determination	-
Description	The boundary was determined by changes in topography, a transition to upland vegetation dominated by Kentucky blue grass and orchard grass, and a lack of wetland hydrology and hydric soils indicators.

6/7/2019
PEM
Wetland 1B appears to be connected to Wetland 1A via a culvert that runs under the Runway 17 RSA. The end of the culvert is rip-rapped and dominated by reed canary grass and purple-stem aster.
Not mapped
Urban land-Kalamazoo complex, 0 to 6 percent slopes (UkB) (Non-Hydric)
Map 1
Photo 9
N/A
Phalaris arundinacea (FACW), Symphotrichum puniceum (OBL), Solanum dulcamara (FAC)
N/A
·
The boundary was determined by changes in topography and a transition to upland vegetation dominated by Kentucky blue grass.

Wetland 2	
Site Information	
Sampling Date	6/7/2019
Delineated Type	PEM
Wetland Description	Wetland 2 is a narrow steep-sided (3-4 feet deep) ditch with culverts at either end. The double 24-inch culverts on the west side drain under the taxilane; the eastern culvert probably connects to the culvert draining to the North drainage area of Wetland 3. Hydric soils were verified and saturation was present at the surface.
Mapped NWI Type	Not mapped
Mapped Soil Type/ Hydric Rating	Urban land-Kalamazoo complex, 0 to 6 percent slopes (UkB) (Non-Hydric)
Map Reference*	Map 3
Photo Numbers**	Photos 15 - 17
Associated Data Pts***	N/A
Wetland Criteria	
Dominant Vegetation	Carex vulpinoidea (OBL), Solidago gigantea (FACW), Acer negundo (saplings) (FAC)
Hydric Soil Indicators	
Hydrology Indicators	N/A
Boundary Determination	
Description	The boundary was determined by changes in topography and a transition to upland vegetation dominated by Kentucky blue grass, timothy, common milkweed, and Bird's-foot trefoil.

Wetland 3		
Site Information		
Sampling Date	8/19/2019	
Delineated Type	PEM/PSS	
Wetland Description	Wetland 3 is a large wetland complex with multiple drainageways carrying flows from the airfield under the perimeter road and off Airport property to the east. Standing water was observed throughout the wetland. The North drainage was dominated by blunt spike rush and woolgrass. A significant topographic break was seen at sampling points 3 and 4 in transition to uplands dominated by Kentucky blue grass. The larger Central drainage was covered by shrubs and black willow trees with some mature cottonwoods. Standing water was seen through this part of the wetland. The Southern drainage is a fairly narrow swale fed by a large culvert at the western end that contained standing water throughout and a diverse mix of herbaceous wetland vegetation. Parts of this wetland were previously mapped on the NWI as PEM1Cd and PEM1F.	
Mapped NWI Type	PEM1Cd, PEM1F	
Mapped Soil Type/ Hydric Rating	Urban land-Kalamazoo complex, 0 to 6 percent slopes (UkB) (Non-Hydric); Adrian muck, 0 to 1 percent slopes (Ad) (Hydric)	
Map Reference*	Мар 3	
Photo Numbers**	Photos 18 - 31	
Associated Data Pts***	DPs 3 - 6	
Wetland Criteria		
Dominant Vegetation	Salix nigra (OBL), Eleocharis palustris (OBL), Salix nigra, Salix x fragilis (FAC), Cornus alba (FACW), Phalaris arundinacea (FACW), Symphyotrichum Ianceolatum (FACW), Geum aleppicum (FAC), Vitis riparia (FAC)	
Hydric Soil Indicators	Depleted Below Dark Surface (A11), Depleted Matrix (F3), Redox Dark Surface (F6)	
Hydrology Indicators	Surface Water (A1), High Water Table (A2), Saturation (A3), Visible on Aerial Imagery (C9), Geomorphic Position (D2), FAC-Neutral (D5)	
Boundary Determination		
Description	The boundary was determined by changes in topography and a transition to upland vegetation dominated by Kentucky blue grass, wild rye, and English plantain. In places, there were sharp topographic breaks which aided boundary determination while in others the topography was flatter and changes in vegetation and a lack of wetland hydrology indicators determined the boundary.	

Wetland 4				
Site Information	Site Information			
Sampling Date	8/19/2019			
Delineated Type	PEM			
Wetland Description	Wetland 4 is a detention area located west of the Mann+Hummel building. A culvert feeds this area from the southeast. Slopes were quite steep on grades as much as 30% on the east, south, and west sides. The north side was somewhat flatter. Vegetation was dominated by cattails, common spike rush, and sandbar willow. Standing water was seen throughout the wetland.			
Mapped NWI Type	Not mapped			
Mapped Soil Type/ Hydric Rating	Kalamazoo loam, 2 to 6 percent slopes (KaB) (Non-hydric)			
Map Reference*	Map 4			
Photo Numbers**	Photos 40 - 44			
Associated Data Pts***	DPs 7 - 8			
Wetland Criteria				
Dominant Vegetation	Typha angustifolia (OBL), Eleocharis palustris (OBL), Salix interior (FACW)			
Hydric Soil Indicators	Depleted Below Dark Surface (A11), Sandy Redox (S5), Depleted Matrix (F3)			
Hydrology Indicators	Surface Water (A1), High Water Table (A2), Saturation (A3), Saturation Visible on Aerial Imagery (C9), Geomorphic Position (D2), FAC-Neutral (D5)			
Boundary Determination				
Description	The boundary was determined by changes in topography and a transition to upland vegetation dominated by Kentucky blue grass and spotted knapweed. Distinct topographic changes were seen on the surrounding steep slopes as well as a lack of wetland hydrology indicators.			

Wetland 5	
Site Information	
Sampling Date	8/19/2019
Delineated Type	PEM
Wetland Description	Wetland 5 is a small depression within a large wooded expanse located between the railroad and the Mann+Hummel building. This area was previously mapped as PEM1C on soils mapped as hydric (Adrian muck). The area is now covered by cherry (Prunus avium and P. serotina), pokeweed, and burnweed. Within Wetland 5, dead and stressed cherry trees were observed. Test pits taken throughout the wetland showed black (2.5/N) heavily organic, dry crumbly soils to depth. No evidence of hydrological inputs from culverts was found and no wetland hydrology was observed or indicated in other parts of the wetland.
Mapped NWI Type	PEM1C
Mapped Soil Type/ Hydric Rating	Adrian muck, 0 to 1 percent slopes (Ad) (Hydric)
Map Reference*	Map 5
Photo Numbers**	Photos 46 - 47
Associated Data Pts***	DPs 9 - 10
Wetland Criteria	
Dominant Vegetation	Persicaria maculosa (FAC)
Hydric Soil Indicators	Redox Dark Surface (F6), Redox Depressions (F8)
Hydrology Indicators	Stunted or Stressed Plants (D1), and Geomorphic Position (D2)
Boundary Determination	
Description	The boundary was determined by slight changes in topography within the depressional area and a transition to upland vegetation dominated by sweet cherry, black cherry, and pokeweed. A lack of wetland hydrology indicators also aided the boundary determination.

Wetland 6		
Site Information		
Sampling Date	8/19/2019	
Delineated Type	PEM	
Wetland Description	Wetland 6 is a shallow swale in the lowest topographic area of a depressional landform just east of a culvert exiting from the airfield. No hydrological connection to this culvert was observed due to the fairly steep topography. Flows from the culvert eventually reach the South drainage of Wetland 3. This area also collects surface runoff from the surrounding landform. The wetland vegetation was dominated by reed canary grass, spotted lady's-thumb, and straw-color flat sedge. This area is regularly mowed.	
Mapped NWI Type	PEM1F	
Mapped Soil Type/ Hydric Rating	Urban land-Kalamazoo complex, 0 to 6 percent slopes (UkB) (Non-Hydric)	
Map Reference*	Map 3	
Photo Numbers**	Photos 32 - 35	
Associated Data Pts***	DPs 11 - 12	
Wetland Criteria		
Dominant Vegetation	Phalaris arundinacea (FACW), Persicaria maculosa (FAC), Cyperus strigosus (FACW)	
Hydric Soil Indicators	Redox Dark Surface (F6)	
Hydrology Indicators	Geomorphic Position (D2), FAC-Neutral (D5)	
Boundary Determination		
Description	The boundary was determined by slight changes in topography, a transition to upland vegetation dominated by Kentucky blue grass and Virginia strawberry, and a lack of wetland hydrology indicators.	

* See Appendix F for Wetland Mapping

** See Appendix H for Photos

*** See Appendix G for Wetland Data Sheets

(2) Other Waters

No other water bodies were identified during the delineation.

C. Uplands

(1) Area A

Area A, located north of airfield, is marked by a large berm paralleling East Kilgore Road dominated by box elder. North of the berm is a plant assemblage consistent with old field vegetation: yarrow, Canada goldenrod, ox-eye daisy, Kentucky blue grass, riverbank grape, hawkweed (yellow and orange), whorled milkweed, sheep sorrel, Indian hemp, wild strawberry, and blackberry. Scattered trees consist of hawthorn, autumn olive, European white birch, black locust, honey locust, sumac, and red maple. No wetlands were delineated in this area. A list of species found in this area is provided in Table 3.

Common Name	Species Name (wetland indicator)	Common Name	Species Name (wetland indicator)
Yarrow	Achillea millefolium (FACU)	Hawthorn	Crataegus crus-galli (FAC)
Canada goldenrod	Solidago canadensis (FACU)	Autumn olive	<i>Elaeagnus umbellata</i> (FACU)
Ox-eye daisy	Leucanthemum vulgare (UPL)	European white birch	Betula pendula (FACU)
Kentucky blue grass	Poa pratensis (FACU)	Black locust	Robinia pseudoacacia (FACU)
Orange hawkweed	Hieracium aurantiacum (UPL)	Honey locust	Gleditsia triacanthos (FAC)
Yellow hawkweed	Hieracium caespitosum (UPL)	Sumac	Rhus typhina (UPL)
Whorled milkweed	Asclepias verticillata (UPL)	Red Maple	Acer rubrum (FAC)
Sheep sorrel	Rumex acetosella (FACU)	Box elder	Acer negundo (FAC)
Indian hemp	Apocynum cannabinum (FAC)		
Wild strawberry	Fragaria virginiana (FACU)		
Blackberry	Rubus allegheniensis (FACU)		
Riverbank grape	Vitis riparia (FAC)		

Table 3. Plant Species found in uplands within Area A

(2) Area B

Located entirely within the airfield at the north end, uplands in Area B were dominated by a mix of grasses and forbs consisting of Kentucky blue grass, orchard grass, white and red clover, English plantain, Bird's-foot trefoil, chickweed, dandelion, Canada thistle, and yarrow. Most of the acreage within Area B with the exception of lower-lying wetland areas is regularly mowed.

(3) Area C

A similar mix of grasses and forbs covers the Runway 35 end and south to the Airport property line. Grading and filling due to extensions of Runway 35 and construction of the approach lighting system and associated access roads have resulted in much of the area formerly mapped as wetland on Adrian muck soils being covered by the same mix of grasses and forbs. A low area just to the southeast of the Runway 35 pavement was examined and test soil pits did not reveal hydric soils.

East of the railroad at the intersection of Romence Road and Sprinkle Road, a large parcel was covered by old field vegetation along with remnants of a tree farm. Rows of spruce and white pine were interspersed with open areas of old field. Herbaceous vegetation is presented in Table 4.

Common Name	Species Name (wetland indicator)		
Yarrow	Achillea millefolium (FACU)		
Canada goldenrod	Solidago canadensis (FACU)		
Daisy fleabane	Erigeron annus (FACU)		
Kentucky blue grass	Poa pratensis (FACU)		
Smooth brome	Bromus inermis (UPL)		
Quack grass	Elymus repens (FACU)		
Common milkweed	Asclepias syriaca (UPL)		
Canada thistle	Cirsium arvense (FACU)		
Bull thistle	Cirsium vulgare (FACU)		
Hoary alyssum	Berteroa incana (UPL)		
Queen Anne's lace	Daucus carota (FACU)		
Common St. John's-wort	Hypericum perforatum (UPL)		
English plantain	Plantago lanceolata (FACU)		
Spotted knapweed	Centaurea stoebe (UPL)		
Mullein	Verbascum thapsus (UPL)		
White pine	Pinus strobus (FACU)		
Spruce	Picea sp.		

Table 4. Plant species found at intersection of Romence and Sprinkle Roads

D. Summary

In summary, the majority of land within the AOI (88.5%) is covered by three non-hydric soil units – two units of Kalamazoo loam (KaA and KaB) and Urban land-Kalamazoo complex (UkB). The balance of the AOI is made up of two areas of Adrian muck soils (11.5%) rated as hydric. Seven wetlands were identified within the AOI under normal circumstances enclosing 4.006 acres. Twelve (12) sampling points document conditions within the AOI. Environmental conditions were wetter than normal range for both the June and August 2019 field visits. The wetland boundary was determined by the observation of multiple indicators of wetland hydrology associated with wetland vegetation on soils exhibiting Depleted Below Dark Surface (A11), Depleted Matrix (F3), Redox Dark Surface (F6), Sandy Redox (S5), and Redox Depressions (F8) in depressional basins and swales. Wetland hydrology was indicated by primary and secondary indicators observed as Surface Water (A1), High Water Table (A2), Saturation (A3), Saturation Visible on Aerial Imagery (C9), Geomorphic Position (D2), and Positive FAC-Neutral (D5). The boundary determinations primarily relied on the absence of one or more wetland criteria: lack of hydrophytic vegetation, wetland hydrology indicators, and hydric soils. Distinct topographic breaks often found along the depression edges also aided the boundary determination.

4. Conclusions

A total of seven separate wetland boundaries enclosing 4.006 acres were delineated within the AOI at the Kalamazoo-Battle Creek International Airport. A jurisdictional determination for these wetlands may be needed from the EGLE. A Part 303, PA451 wetland fill permit from the EGLE may be needed for any wetland mitigation activities within the jurisdictional wetland boundaries. Independent review by local land use authorities and adoption of the wetland boundaries under shoreland/wetland zoning ordinances may also be required. Final authority over the project rests with the above federal, state, and local agencies.

The wetland and water boundaries established by this work are valid only for the subject project and any use or interpretation of its findings for areas outside the project area of interest is not supported. The user of this wetland boundary report is advised that changing environmental conditions may affect the future validity of the wetland boundaries so established.

5. Certifications and Limitations

The undersigned does hereby certify and state that she is an employee of Mead & Hunt, Inc., that she has been designated as being in responsible charge of the delineation of wetlands described herein; and that this delineation was performed in accordance with the USACE 1987 *Wetland Delineation Manual* as enhanced by the *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Midwest* (U.S. Army Corps of Engineers, 2010).

This wetland delineation report documents vegetation, soils, and hydrology conditions on the abovereferenced parcel according to these standard accepted practices, and the wetland boundary so established is valid only for the designated area. No uses or interpretations of wetland conditions or boundaries outside of the work area are supported by this work.

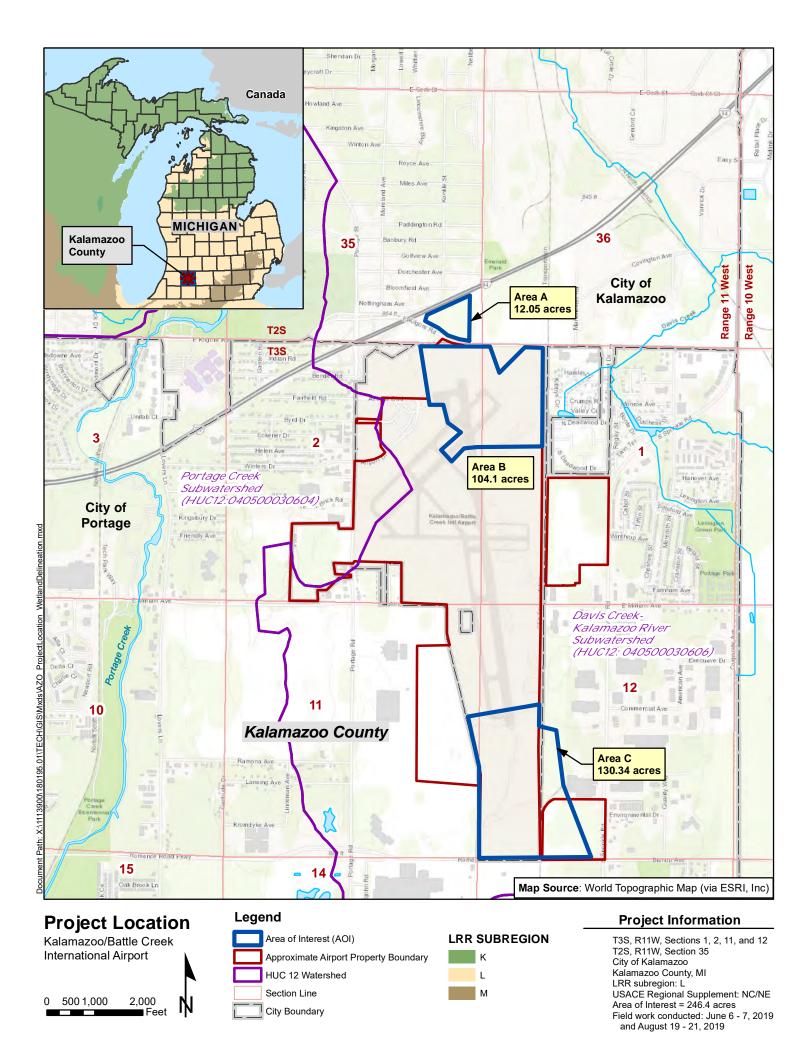
The mapped waters and wetland boundaries are valid under the environmental conditions existing at the time of delineation. The user of this information is hereby notified that changing environmental conditions may affect the future validity of the wetland boundary.

MEAD & HUNT, Inc.

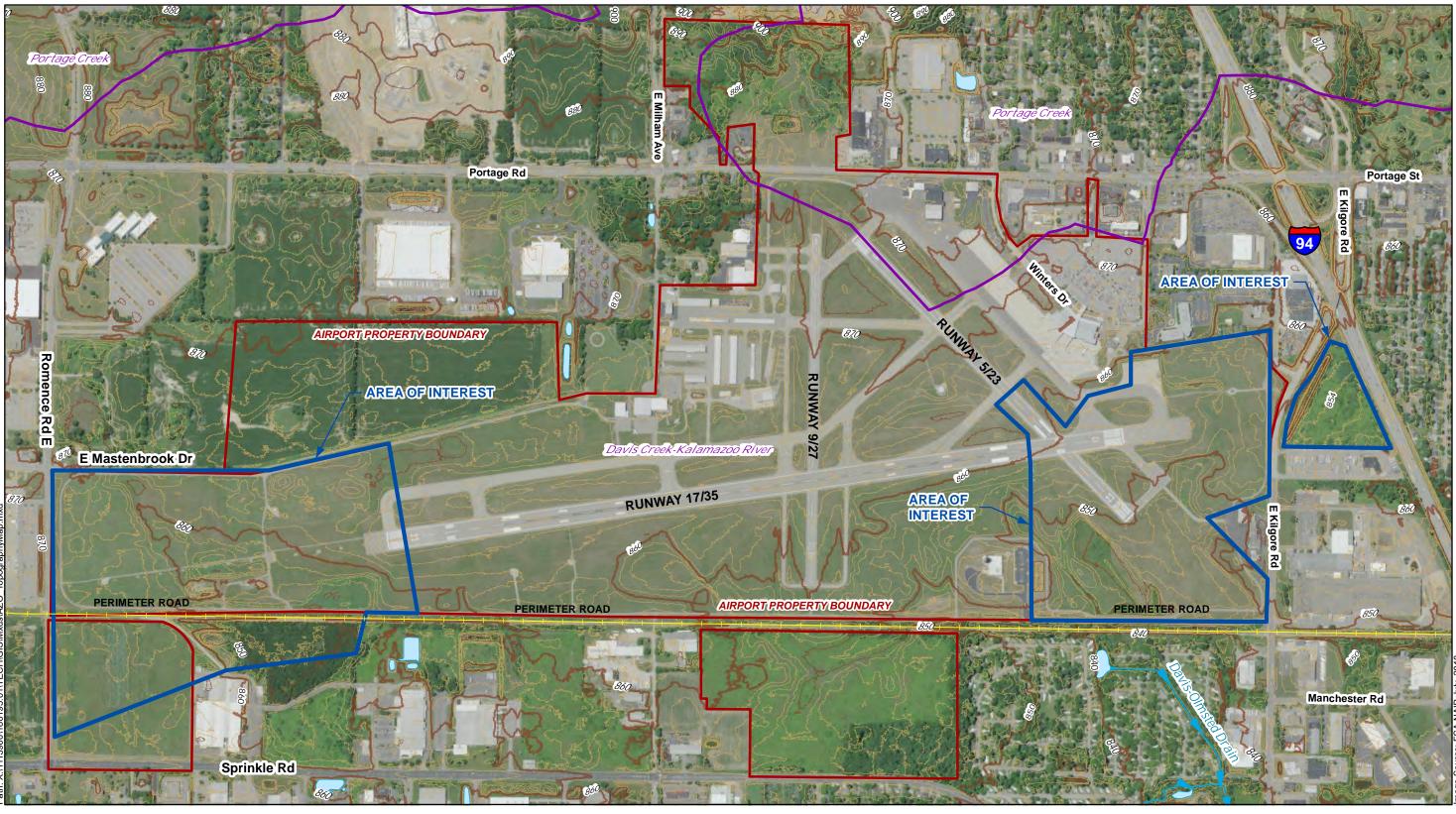
Roma Ho

Brauna Hartzell Wetland Ecologist & GIS Analyst

Date: June 2020


6. References

The following data sources were examined prior to fieldwork:


Google Earth. Historical Aerial Images, Google Inc.

- Lichvar, R.W., D. L. Banks, W. N. Kirchner, and N. C. Melvin, 2016. State of Michigan 2016 Wetland Plant List. The National Wetland Plant List: 2016 wetland ratings, version 3.3. Phytoneuron 2016-30:1-17. Published 28 April 2016. <u>http://wetland_plants.usace.army.mil/</u>.
- Michigan Department of Environment, Great Lakes, and Energy (EGLE), Wetlands Map Viewer. Accessed at <u>https://www.mcgi.state.mi.us/wetlands/mcgiMap.html#</u>.
- National Wetlands Inventory from the U.S. Fish and Wildlife Service Wetlands Mapper. Accessed at <u>https://www.fws.gov/wetlands/data/mapper.html</u>.
- Soils Survey of Kalamazoo County, MI. U.S. Department of Agriculture (USDA), Natural Resources Conservation Service, Web Soil Survey available online at <u>http://websoilsurvey.nrcs.usda.gov/app/WebSoilSurvey.aspx</u>.
- U.S. Army Corps of Engineers, 2012. *Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral/Northeast Region (Version 2.0),* ed. J.S. Wakely, R.W. Lichvar, and C.V. Noble. ERDC/EL TR-11-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.
- U.S. Department of Agriculture, Natural Resource Conservation Service (USDA, NRCS), 2017. *Field Indicators of Hydric Soils in the United States*, Version 8.1, ed. L.M. Vasilas, G.W. Hurt, and J.F. Berkowitz. USDA, NRCS in cooperation with the National Technical Committee for Hydric Soils.
- USDA-FSA National Agriculture Imagery Program (NAIP). Accessed as a GIS map service at <u>https://gis.apfo.usda.gov/arcgis/rest/services</u>.

Appendix A. Project Location and Topography Map

Appendix B. Detailed Topographic, FEMA Floodplain, and NRCS Soils Maps

Topography Map Kalamazoo/Battle Creek International Airport

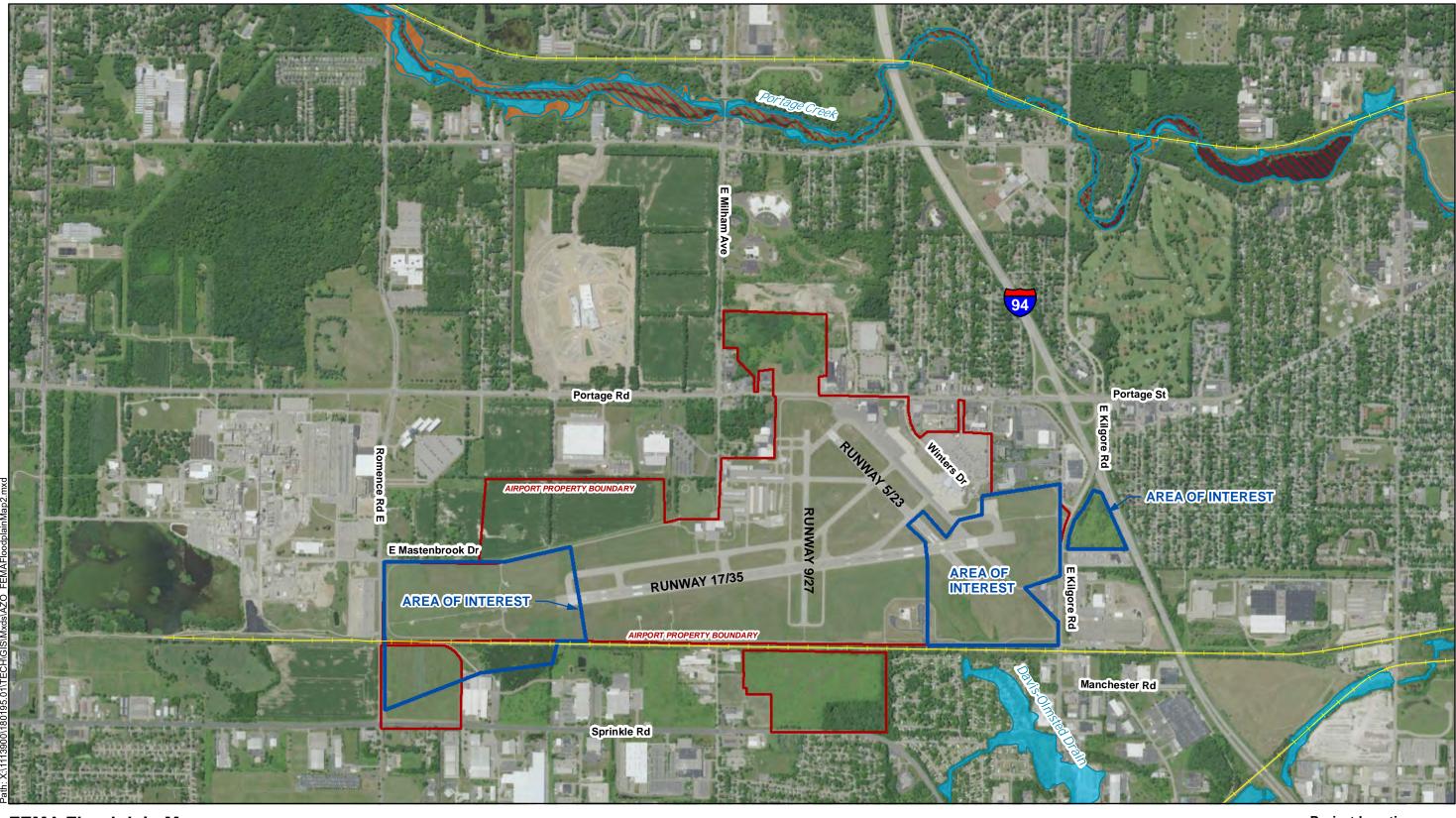
Data Sources: Airport Property Boundary: AZO Airport Layout Plan Contours: 2-foot elevation contours created by Remote Sensing & GIS Research and Outreach Services, Michigan State University, 2015. Obtained from Kalamazoo County GIS. County Drains: Obtained from Kalamazoo County GIS

Legend

County Drain

Railroads

- Approximate Airport Property Boundary Contour Type Area of Interest (AOI) ----- Index HUC 12 Watershed Index_Depression Pond/Lake
 - Intermediate
 - Intermediate_Depression



 \prec

Project Location

T3S, R11W, Sections 1, 2, 11, and 12 T2S, R11W, Section 35 Kalamazoo/Battle Creek Intl Airport City of Kalamazoo Kalamazoo County, MI LRR subregion: L USACE Regional Supplement: NC/NE Area of Interest = 246.4 acres Field work conducted: June 6 - 7, 2019 and August 19 - 21, 2019

FEMA Floodplain Map Kalamazoo/Battle Creek International Airport

Data Sources:

Airport Property Boundary: AZO Airport Layout Plan Flood Hazard: FEMA National Flood Hazard Layer, Kalamazoo County, MI

Legend

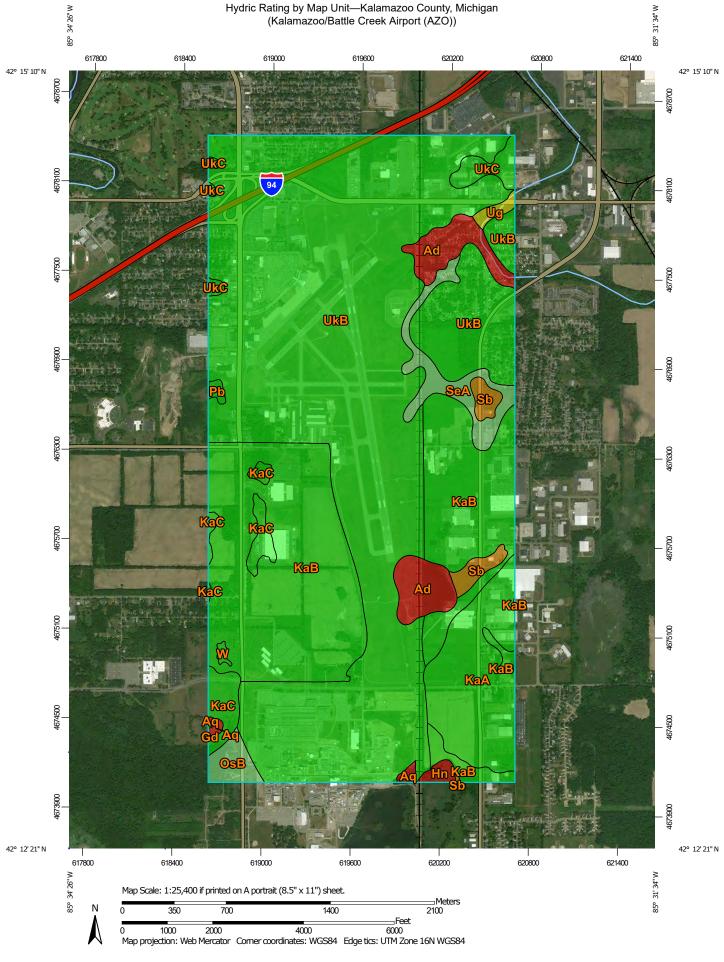
Approximate Airport Property Boundary Flood Hazard

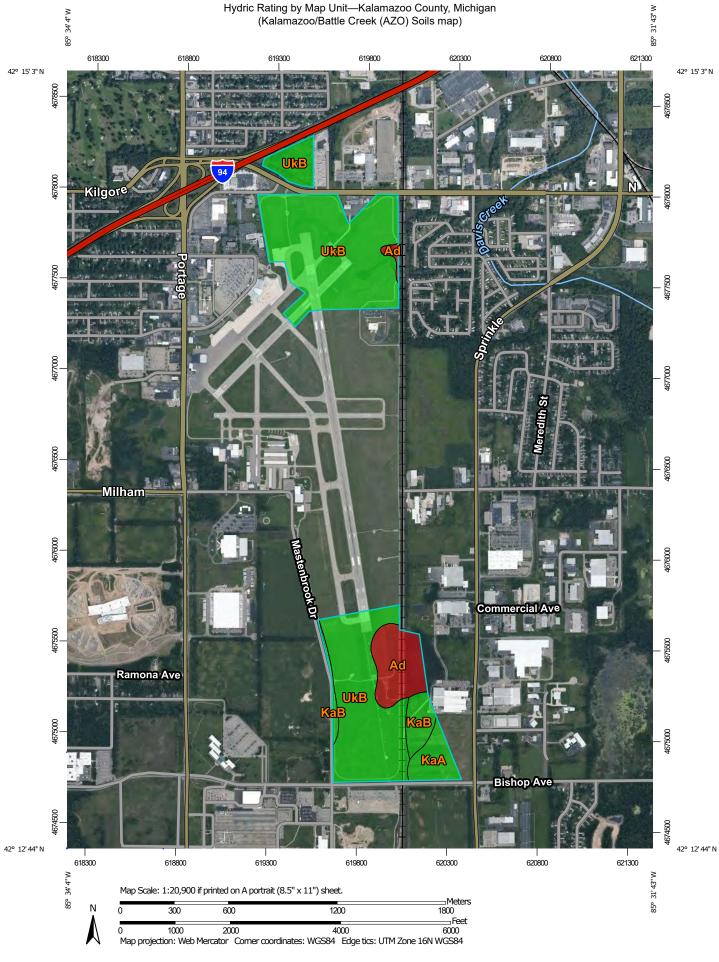
Area of Interest (AOI)

Railroads

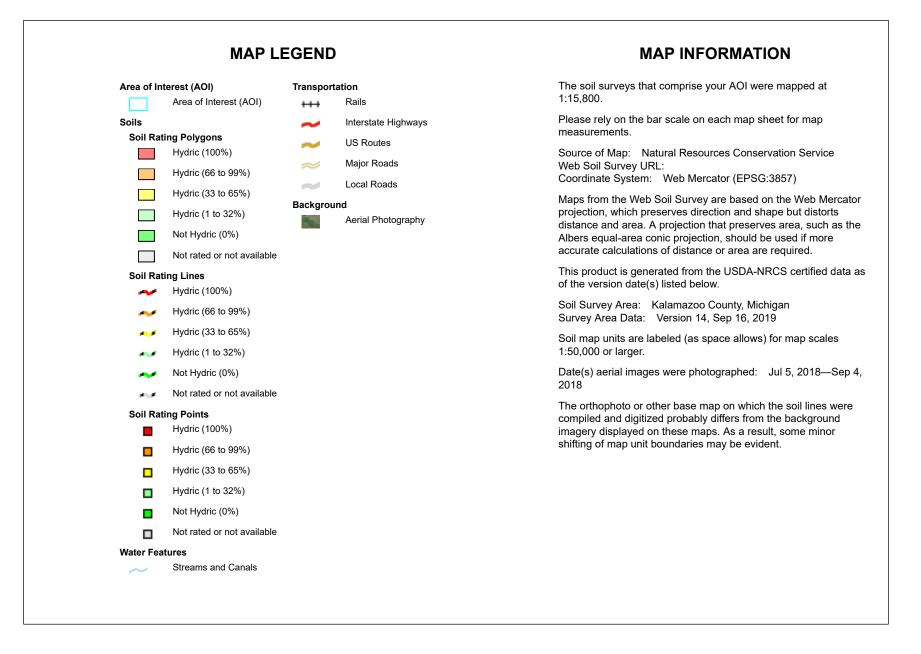
- 1% Annual Chance Flood Hazard

0.2% Annual Chance Flood Hazard


Regulatory Floodway


Ź

0 500 1,000 2,000


Project Location

T3S, R11W, Sections 1, 2, 11, and 12 T2S, R11W, Section 35 Kalamazoo/Battle Creek Intl Airport City of Kalamazoo Kalamazoo County, MI LRR subregion: L USACE Regional Supplement: NC/NE Area of Interest = 246.4 acres Field work conducted: June 6 - 7, 2019 and August 19 - 21, 2019

USDA

USDA

Hydric Rating by Map Unit

			- 1	
Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
Ad	Adrian muck, 0 to 1 percent slopes	100	28.3	11.5%
КаА	Kalamazoo loam, 0 to 2 percent slopes	0	13.6	5.5%
КаВ	Kalamazoo loam, 2 to 6 percent slopes	0	13.6	5.5%
UkB	Urban land-Kalamazoo complex, 0 to 6 percent slopes	0	191.0	77.5%
Totals for Area of Interest			246.5	100.0%

Description

This rating indicates the percentage of map units that meets the criteria for hydric soils. Map units are composed of one or more map unit components or soil types, each of which is rated as hydric soil or not hydric. Map units that are made up dominantly of hydric soils may have small areas of minor nonhydric components in the higher positions on the landform, and map units that are made up dominantly of nonhydric soils may have small areas of minor hydric components in the lower positions on the landform. Each map unit is rated based on its respective components and the percentage of each component within the map unit.

The thematic map is color coded based on the composition of hydric components. The five color classes are separated as 100 percent hydric components, 66 to 99 percent hydric components, 33 to 65 percent hydric components, 1 to 32 percent hydric components, and less than one percent hydric components.

In Web Soil Survey, the Summary by Map Unit table that is displayed below the map pane contains a column named 'Rating'. In this column the percentage of each map unit that is classified as hydric is displayed.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). Under natural conditions, these soils are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

References:

Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.

Soil Survey Staff. 2006. Keys to soil taxonomy. 10th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.

Rating Options

Aggregation Method: Percent Present Component Percent Cutoff: None Specified Tie-break Rule: Lower

Hydric Soil List - All Components

This table lists the map unit components and their hydric status in the survey area. This list can help in planning land uses; however, onsite investigation is recommended to determine the hydric soils on a specific site (National Research Council, 1995; Hurt and others, 2002).

The three essential characteristics of wetlands are hydrophytic vegetation, hydric soils, and wetland hydrology (Cowardin and others, 1979; U.S. Army Corps of Engineers, 1987; National Research Council, 1995; Tiner, 1985). Criteria for all of the characteristics must be met for areas to be identified as wetlands. Undrained hydric soils that have natural vegetation should support a dominant population of ecological wetland plant species. Hydric soils that have been converted to other uses should be capable of being restored to wetlands.

Hydric soils are defined by the National Technical Committee for Hydric Soils (NTCHS) as soils that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (Federal Register, 1994). These soils, under natural conditions, are either saturated or inundated long enough during the growing season to support the growth and reproduction of hydrophytic vegetation.

The NTCHS definition identifies general soil properties that are associated with wetness. In order to determine whether a specific soil is a hydric soil or nonhydric soil, however, more specific information, such as information about the depth and duration of the water table, is needed. Thus, criteria that identify those estimated soil properties unique to hydric soils have been established (Federal Register, 2002). These criteria are used to identify map unit components that normally are associated with wetlands. The criteria used are selected estimated soil properties that are described in "Soil Taxonomy" (Soil Survey Staff, 1999) and "Keys to Soil Taxonomy" (Soil Survey Staff, 2006) and in the "Soil Survey Manual" (Soil Survey Division Staff, 1993).

If soils are wet enough for a long enough period of time to be considered hydric, they should exhibit certain properties that can be easily observed in the field. These visible properties are indicators of hydric soils. The indicators used to make onsite determinations of hydric soils are specified in "Field Indicators of Hydric Soils in the United States" (Hurt and Vasilas, 2006).

Hydric soils are identified by examining and describing the soil to a depth of about 20 inches. This depth may be greater if determination of an appropriate indicator so requires. It is always recommended that soils be excavated and described to the depth necessary for an understanding of the redoximorphic processes. Then, using the completed soil descriptions, soil scientists can compare the soil features required by each indicator and specify which indicators have been matched with the conditions observed in the soil. The soil can be identified as a hydric soil if at least one of the approved indicators is present.

Map units that are dominantly made up of hydric soils may have small areas, or inclusions, of nonhydric soils in the higher positions on the landform, and map units dominantly made up of nonhydric soils may have inclusions of hydric soils in the lower positions on the landform.

The criteria for hydric soils are represented by codes in the table (for example, 2). Definitions for the codes are as follows:

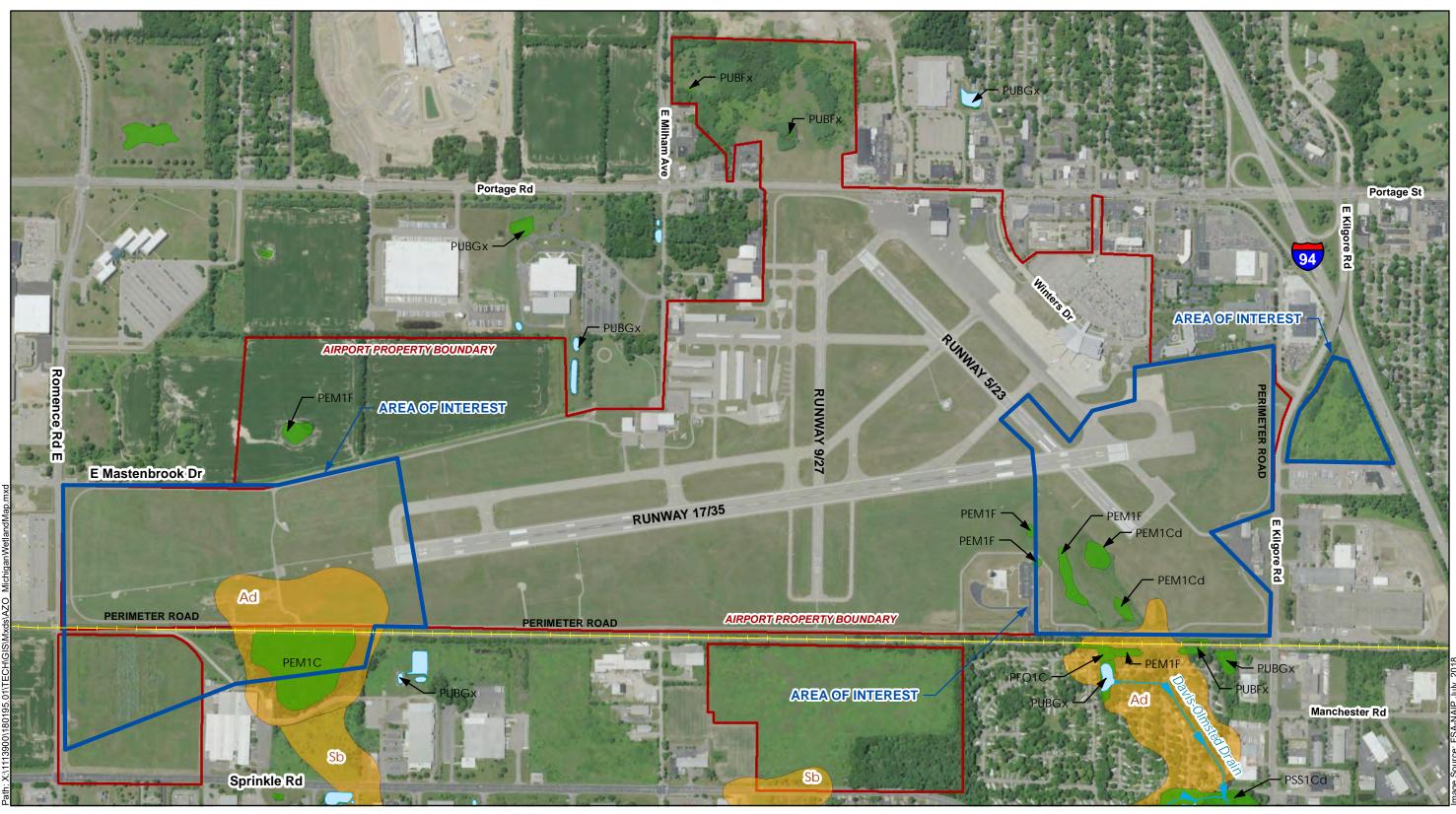
- 1. All Histels except for Folistels, and Histosols except for Folists.
- 2. Soils in Aquic suborders, great groups, or subgroups, Albolls suborder, Historthels great group, Histoturbels great group, Pachic subgroups, or Cumulic subgroups that:
 - A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
 - B. Show evidence that the soil meets the definition of a hydric soil;
- 3. Soils that are frequently ponded for long or very long duration during the growing season.
 - A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
 - B. Show evidence that the soil meets the definition of a hydric soil;
- 4. Map unit components that are frequently flooded for long duration or very long duration during the growing season that:
 - A. Based on the range of characteristics for the soil series, will at least in part meet one or more Field Indicators of Hydric Soils in the United States, or
 - B. Show evidence that the soil meets the definition of a hydric soil;

Hydric Condition: Food Security Act information regarding the ability to grow a commodity crop without removing woody vegetation or manipulating hydrology.

References:

- Federal Register. July 13, 1994. Changes in hydric soils of the United States.Federal Register. Doc. 2012-4733 Filed 2-28-12. February, 28, 2012. Hydric soils of the United States.
- Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18.
- Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service. U.S. Department of Agriculture Handbook 436.
- Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service.
- Vasilas, L.M., G.W. Hurt, and C.V. Noble, editors. Version 7.0, 2010. Field indicators of hydric soils in the United States.

Report—Hydric Soil List - All Components


Hydric	Soil List - All Compon	ents-MI077	/-Kalamazoo County, M	lichigan		
Map symbol and map unit name	Component/Local Phase	Comp. pct.	Landform	Hydric status	Hydric criteria met (code)	
Ad: Adrian muck, 0 to 1 percent slopes	Adrian	85-100	Depressions on outwash plains,depressions on moraines on outwash plains	Yes	1,3	
	Kingsville	0-10	Outwash plains,nearshore zones (relict)	Yes	2,3	
	Edwards	0-12	Depressions on outwash plains,depressions on moraines on outwash plains	Yes	1,3	
	Houghton	0-10	Depressions on moraines on outwash plains,depressions on outwash plains	Yes	1,3	
	Gilford-Gravelly subsoil	0-7	Glacial drainage channels,glacial drainage channels	Yes	2,3	
KaA: Kalamazoo loam, 0 to 2 percent slopes	Kalamazoo	85-100	Outwash plains,outwash terraces	No	_	
	Spinks	0-10	Outwash terraces,outwash plains	No	-	
	Bronson	0-5	Outwash plains,outwash terraces	No	-	
	Sleeth	0-5	Outwash plains,outwash terraces	No	-	
KaB: Kalamazoo loam, 2 to 6 percent slopes	Kalamazoo	85-100	Outwash terraces,outwash plains	No	-	
	Spinks	0-10	Outwash terraces,outwash plains	No	-	
	Sleeth	0-5	Outwash plains,outwash terraces	No	_	
	Bronson	0-5	Outwash plains,outwash terraces	No	-	

Hydric Soil List - All Components–MI077-Kalamazoo County, Michigan							
Map symbol and map unit name	Component/Local Phase	Comp. pct.	Landform	Hydric status	Hydric criteria met (code)		
UkB: Urban land-Kalamazoo complex, 0 to 6 percent slopes	pes Urban land 55-75 —		—	No	_		
	Kalamazoo	25-40	Outwash terraces,outwash plains	No	—		
	Spinks	0-8	Outwash plains,outwash terraces	No	_		
	Bronson	0-7	Outwash plains,outwash terraces	No	-		
	Sleeth	0-3	Outwash plains,outwash terraces	No	_		

Data Source Information

Soil Survey Area: Kalamazoo County, Michigan Survey Area Data: Version 14, Sep 16, 2019

Appendix C. Previous Wetland Mapping

Previous Wetland Mapping Kalamazoo/Battle Creek International Airport

Data Sources:

Airport Property Boundary: AZO Airport Layout Plan NWI: National Wetlands Inventory (2005) MI EGLE Wetlands Map Viewer Soils: USDA Web Soil Survey County Drains: Obtained from Kalamazoo County GIS Legend

Approximate Airport Property Boundary Area of Interest (AOI)

Pond/Lake

County Drain

National Wetland Inventory (2005) Hydric or Predominantly Hydric Soils Units

Railroads

Ź

0 250 500 1,000

Project Location

T3S, R11W, Sections 1, 2, 11, and 12 T2S, R11W, Section 35 Kalamazoo/Battle Creek Intl Airport City of Kalamazoo Kalamazoo County, MI LRR subregion: L USACE Regional Supplement: NC/NE Area of Interest = 246.4 acres Field work conducted: June 6 - 7, 2019 and August 19 - 21, 2019

Appendix D. WETS Analysis and Climatic Data

WETS Analysis Worksheet

Project Name:	Kalamazoo Runway 17/35 Extension EA
Period Of Interest:	March - May, 2019
Station:	KALAMAZOO - BATTLE CREEK INTL AP, MI
County:	Kalamazoo, MI
Normals Period:	1999 - 2019

Long-term rainfall records

		30%			
		chance		30%	
	Month	<	Normal	chance >	
1st month prior:	May	2.93	4.26	5.07	
2nd month prior:	April	2.05	3.09	3.70	
3rd month prior:	March	1.23	1.97	2.37	
		Sum =	9.32		Sum =

Site Determination								
Site								
Rainfall	Condition	Condition**	Month					
(in)	(Dry/Normal*/Wet)	Value	Weight	Product				
5.75	Wet	3	3	9				
3.90	Wet	3	2	6				
2.62	Wet	3	1	3				
12.27			Sum***=	18				

* Normal precipitation with 30	Determination:	Х	Wet	
 * Normal precipitation with 30% to 70% probability of occurrence **Condition value: ***If sum is: Dry = 1 6 to 9 then period has been drier than normal Normal = 2 10 to 14 then period has been normal 			Dry	
Condition value:	*If sum is:			Normal
Dry = 1	6 to 9 then period has been drier than normal			
Normal = 2	10 to 14 then period has been normal			
Wet = 3	15 to 18 then period has been wetter than normal			

Precipitation data source: <u>http://agacis.rcc-acis.org/</u>

Reference:

Donald E.Woodward, ed. 1997. *Hydrology Tools for Wetland Determination*, Chapter 19. Engineering Field Handbook. U.S. Department of Agriculture, Natural Resources Conservation Service, Fort Worth, TX.

WETS Analysis Worksheet

Project Name:	Kalamazoo Runway 17/35 Extension EA
Period Of Interest:	May - July, 2019
Station:	KALAMAZOO - BATTLE CREEK INTL AP, MI
County:	Kalamazoo, MI
Normals Period:	1999 - 2019

Long-term rainfall records

		30%			
		chance		30%	
	Month	<	Normal	chance >	
1st month prior:	July	2.21	3.34	4.01	
2nd month prior:	June	2.22	3.24	3.87	
3rd month prior:	May	2.93	4.26	5.07	
		Sum =	10.84		Sι

	Site Determination									
	Site									
	Rainfall	Condition	Condition**	Month						
	(in)	(Dry/Normal*/Wet)	Value	Weight	Product					
	2.65	Normal	2	3	6					
	5.79	Wet	3	2	6					
	5.75	Wet	3	1	3					
Sum =	14.19			Sum***=	15					

* Normal precipitation with 30% to 7	Determination:	Х	Wet	
		_		Dry
Condition value:	*If sum is:			Normal
Dry = 1	6 to 9 then period has been drier than normal	_		
Normal = 2	10 to 14 then period has been normal			
Wet = 3	15 to 18 then period has been wetter than normal			

Precipitation data source: http://agacis.rcc-acis.org/

Reference:

Donald E.Woodward, ed. 1997. Hydrology Tools for Wetland Determination, Chapter 19. Engineering Field Handbook. U.S. Department of Agriculture, Natural Resources Conservation Service, Fort Worth, TX.

WETS Station: KALAMAZOO BATTLE CREEK INTL AP, MI

Requested years: 1999 - 2019

Month	Avg Max Temp	Avg Min Temp	Avg Mean Temp	Avg Precip	30% chance precip less than	30% chance precip more than	Avg number days precip 0. 10 or more	Avg Snowfall	
Jan	31.4	17.6	24.5	1.66	0.87	2.02	4	-	
Feb	34.3	18.9	26.6	1.53	0.97	1.85	4	-	
Mar	46.1	27.1	36.6	1.97	1.23	2.37	5	-	
Apr	60.0	38.1	49.1	3.09	2.05	3.70	7	-	
Мау	70.7	48.9	59.8	4.26	2.93	5.07	9	-	
Jun	79.5	58.4	69.0	3.24	2.22	3.87	6	-	
Jul	83.7	62.0	72.8	3.34	2.21	4.01	6	-	
Aug	81.4	60.4	70.9	3.70	2.55	4.41	6	-	
Sep	75.2	53.2	64.2	3.14	2.10	3.76	6	-	
Oct	61.5	42.2	51.8	3.91	2.41	4.72	7	-	
Nov	48.3	32.7	40.5	2.38	1.58	2.85	6	-	
Dec	36.2	23.7	29.9	1.75	1.38	2.02	5	-	
Annual:					31.24	36.36			
Average	59.0	40.3	49.6	-	-	-	-	-	
Total	-	-	-	33.97			70	-	

GROWING SEASON DATES

Years with missing data:	24 deg =	28 deg =	32 deg =
	0	0	0
Years with no occurrence:	24 deg =	28 deg =	32 deg =
	0	0	0
Data years used:	24 deg =	28 deg =	32 deg =
	21	21	21
Probability	24 F or	28 F or	32 F or
	higher	higher	higher
50 percent *	4/3 to 11/	4/18 to	4/30 to
	13: 224	10/29:	10/16:
	days	194 days	169 days
70 percent *	3/31 to	4/14 to	4/26 to
	11/17:	11/3: 203	10/20:
	231 days	days	177 days
* Developt all and a fith a			

* Percent chance of the growing season occurring between the Beginning and Ending dates.

STATS TABLE - total precipitation (inches)													
Yr	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annl
1998				3.67	0.84	3.35	3.85	2.42	2. 42	2. 81	1. 62	1.17	22. 15
1999	2.54	1.43	0.97	6.94	1.75	2.33	3.83	2.74	1. 89	0. 78	1. 50	2.47	29. 17
2000	0.97	1.12	1.42	3.25	7.04	3.78	3.91	3.07	3. 80	M3. 12	3. 45	1.47	36. 40
2001	0.48	3.13	0.48	2.88	5.28	4.08	2.44	6.38	3. 84	6. 70	2. 62	M1. 33	39. 64
2002	1.28	1.31	2.15	2.81	3.57	1.37	1.75	4.33	1. 06	1. 80	1. 61	1.53	24. 57
2003	0.37	0.63	1.78	3.06	4.14	1.79	2.63	3.48	4. 26	2. 97	6. 26	1.35	32. 72
2004	0.59	0.83	4.02	0.85	9.11	3.90	3.56	3.15	1. 58	3. 87	4. 05	1.94	37. 45
2005	4.25	2.05	1.09	0.42	2.04	4.85	6.09	2.03	2. 46	0. 78	2. 38	1.15	29. 59
2006	3.23	0.99	2.93	1.66	4.76	1.98	4.04	4.79	3.	3.	2.	2.82	37.

									46	98	94		58
2007	2.74	0.55	1.79	2.74	2.42	1.96	0.70	8.01	1. 50	4. 67	1. 82	1.75	30. 65
2008	3.47	2.37	1.87	2.05	2.01	3.93	3.58	1.29	11. 28	2. 34	1. 08	2.51	37. 78
2009	0.82	2.23	3.53	4.47	1.86	2.99	0.39	5.45	1. 32	5. 51	0. 80	1.58	30. 95
2010	0.45	0.74	0.89	2.47	5.70	5.64	2.58	2.07	2. 95	1. 19	2. 24	1.06	27. 98
2011	0.22	0.63	2.07	5.34	5.94	1.60	5.44	3.53	3. 42	3. 22	3. 28	1.84	36. 53
2012	2.13	M1.97	2.67	3.56	1.36	0.86	2.52	2.74	2. 72	4. 79	0. 36	1.60	27. 28
2013	3.40	1.26	0.68	6.25	3.47	6.29	3.54	4.20	1. 73	4. 66	2. 49	1.46	39. 43
2014	1.12	1.41	1.25	2.02	2.62	3.87	2.95	1.55	2. 82	4. 89	2. 57	M1. 06	28. 13
2015	0.96	M0.57	M0.33	2.03	5.82	3.91	4.11	2.94	4. 45	2. 04	1. 90	3.19	32. 25
2016	0.88	0.68	2.96	3.13	3.33	1.90	7.46	7.38	3. 33	3. 36	2. 08	1.42	37. 91
2017	2.69	2.03	4.17	2.62	3.64	1.24	3.19	1.45	1. 81	12. 41	3. 31	0.71	39. 27
2018	1.02	4.81	1.60	2.43	7.78	4.01	2.85	5.49	2. 24	4. 17	1. 94	1.86	40. 20
2019	1.16	1.45	2.62	3.90	5.75	5.79	2.65	1.73	4. 11	4. 77	1. 24	2.69	37. 86
2020	3.39	M0.34											3.73
Notes: Data missing in any													

month have an "M" flag. A "T" indicates a trace of precipitation.

Data missing for all days in a month or year is blank.

Creation date: 2016-07-22

Climatological Data for KALAMAZOO BATTLE CREEK INTL AP, MI - June 2019

Date	Max Temperature	Min Temperature	Avg Temperature	GDD Base 40	GDD Base 50	Precipitation	Snowfall	Snow Depth
2019-06-01	79	58	68.5	29	19	0.08	М	М
2019-06-02	70	51	60.5	21	11	0.00	М	М
2019-06-03	69	44	56.5	17	7	0.00	М	М
2019-06-04	74	48	61.0	21	11	Т	М	М
2019-06-05	80	63	71.5	32	22	0.43	М	М
2019-06-06	79	60	69.5	30	20	0.00	М	М
2019-06-07	84	57	70.5	31	21	0.00	М	М
2019-06-08	84	56	70.0	30	20	0.00	М	М
2019-06-09	72	65	68.5	29	19	0.34	М	М
2019-06-10	69	51	60.0	20	10	0.24	М	М
2019-06-11	79	47	63.0	23	13	0.00	М	М
2019-06-12	78	56	67.0	27	17	0.03	М	М
2019-06-13	60	48	54.0	14	4	1.14	М	М
2019-06-14	77	46	61.5	22	12	0.00	М	М
2019-06-15	72	61	66.5	27	17	0.02	М	М
2019-06-16	67	58	62.5	23	13	0.12	М	М
2019-06-17	71	60	65.5	26	16	0.00	М	0
2019-06-18	81	59	70.0	30	20	0.00	М	М
2019-06-19	82	61	71.5	32	22	1.19	М	М
2019-06-20	67	60	63.5	24	14	1.89	М	М
2019-06-21	79	56	67.5	28	18	0.00	М	М
2019-06-22	80	59	69.5	30	20	0.00	М	М
2019-06-23	84	60	72.0	32	22	0.02	М	М
2019-06-24	80	64	72.0	32	22	0.25	М	М
2019-06-25	85	63	74.0	34	24	0.04	М	М
2019-06-26	86	65	75.5	36	26	0.00	М	М
2019-06-27	87	64	75.5	36	26	Т	М	М
2019-06-28	88	69	78.5	39	29	Т	М	М
2019-06-29	89	69	79.0	39	29	0.00	М	М
2019-06-30	89	65	77.0	37	27	0.00	М	М
Average Sum	78.0	58.1	68.1	851	551	5.79	М	0.0

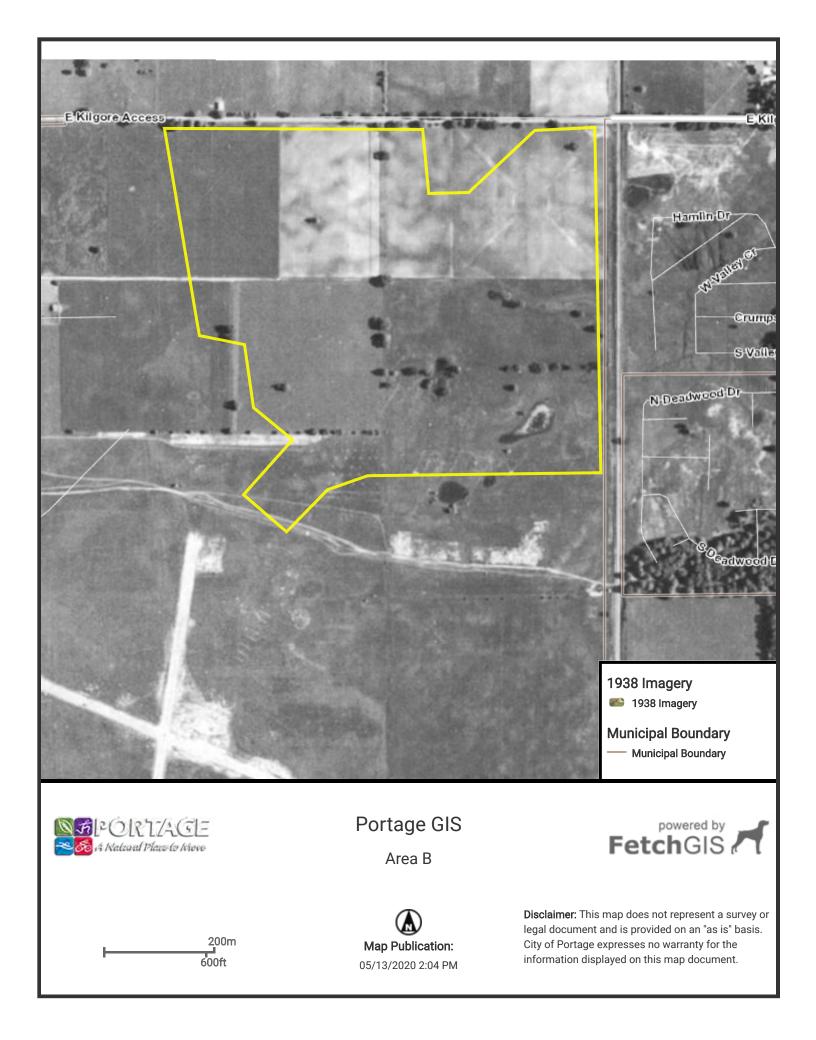
Climatological Data for KALAMAZOO BATTLE CREEK INTL AP, MI - August 2019

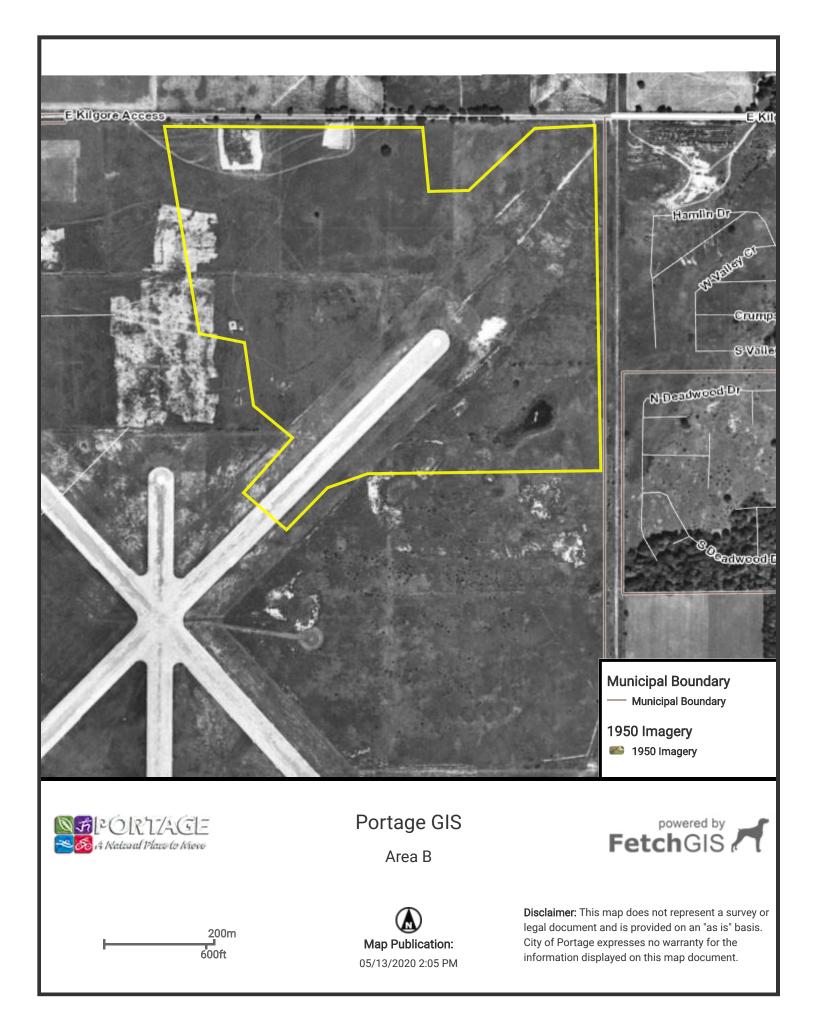
Date	Max Temperature	Min Temperature	Avg Temperature	GDD Base 40	GDD Base 50	Precipitation	Snowfall	Snow Depth
2019-08-01	84	56	70.0	30	20	0.00	М	М
2019-08-02	85	55	70.0	30	20	0.00	М	М
2019-08-03	88	57	72.5	33	23	0.00	М	М
2019-08-04	88	63	75.5	36	26	0.37	М	М
2019-08-05	88	61	74.5	35	25	Т	М	М
2019-08-06	82	66	74.0	34	24	0.15	М	М
2019-08-07	86	62	74.0	34	24	0.00	М	М
2019-08-08	82	61	71.5	32	22	0.12	М	М
2019-08-09	80	58	69.0	29	19	0.00	М	М
2019-08-10	84	56	70.0	30	20	0.00	М	М
2019-08-11	86	59	72.5	33	23	Т	М	М
2019-08-12	84	69	76.5	37	27	0.02	М	М
2019-08-13	87	68	77.5	38	28	0.00	М	М
2019-08-14	85	64	74.5	35	25	0.06	М	М
2019-08-15	76	60	68.0	28	18	0.00	М	М
2019-08-16	83	55	69.0	29	19	0.23	М	М
2019-08-17	82	64	73.0	33	23	Т	М	М
2019-08-18	84	68	76.0	36	26	0.32	М	М
2019-08-19	87	65	76.0	36	26	0.00	М	М
2019-08-20	86	70	78.0	38	28	Т	М	М
2019-08-21	87	65	76.0	36	26	0.01	М	М
2019-08-22	79	58	68.5	29	19	0.00	М	М
2019-08-23	78	51	64.5	25	15	0.00	М	М
2019-08-24	78	49	63.5	24	14	0.00	М	М
2019-08-25	81	51	66.0	26	16	0.00	М	М
2019-08-26	72	61	66.5	27	17	0.42	М	М
2019-08-27	82	67	74.5	35	25	0.00	М	М
2019-08-28	76	58	67.0	27	17	0.00	М	М
2019-08-29	85	54	69.5	30	20	0.03	М	М
2019-08-30	76	53	64.5	25	15	0.00	М	М
2019-08-31	77	49	63.0	23	13	0.00	М	0
Average Sum	82.5	59.8	71.1	973	663	1.73	М	0.0

Appendix E. Historic Aerial Imagery

Area of Interest

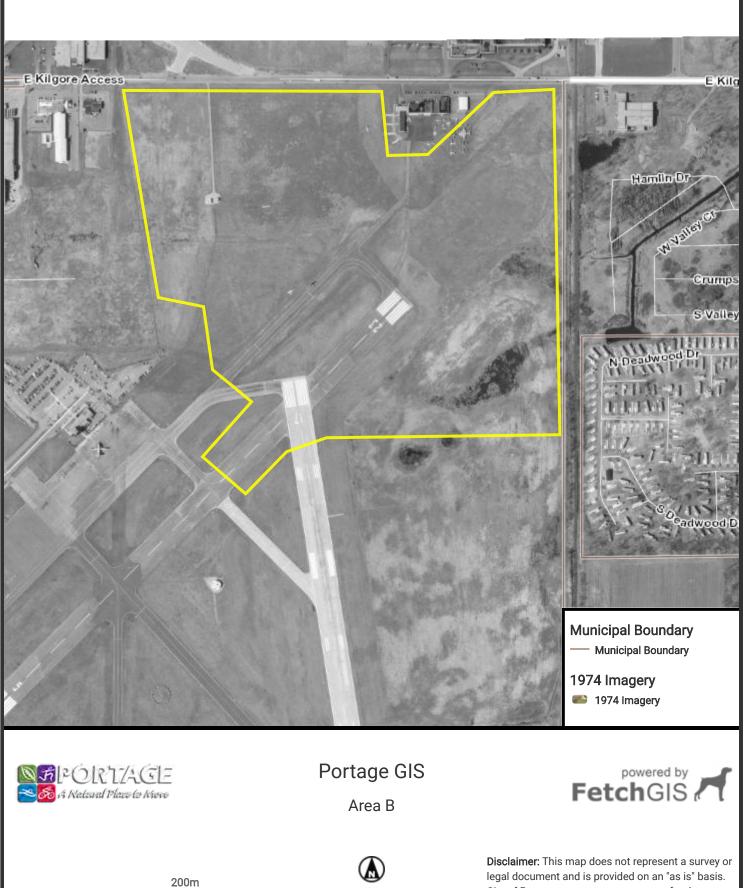
Area A

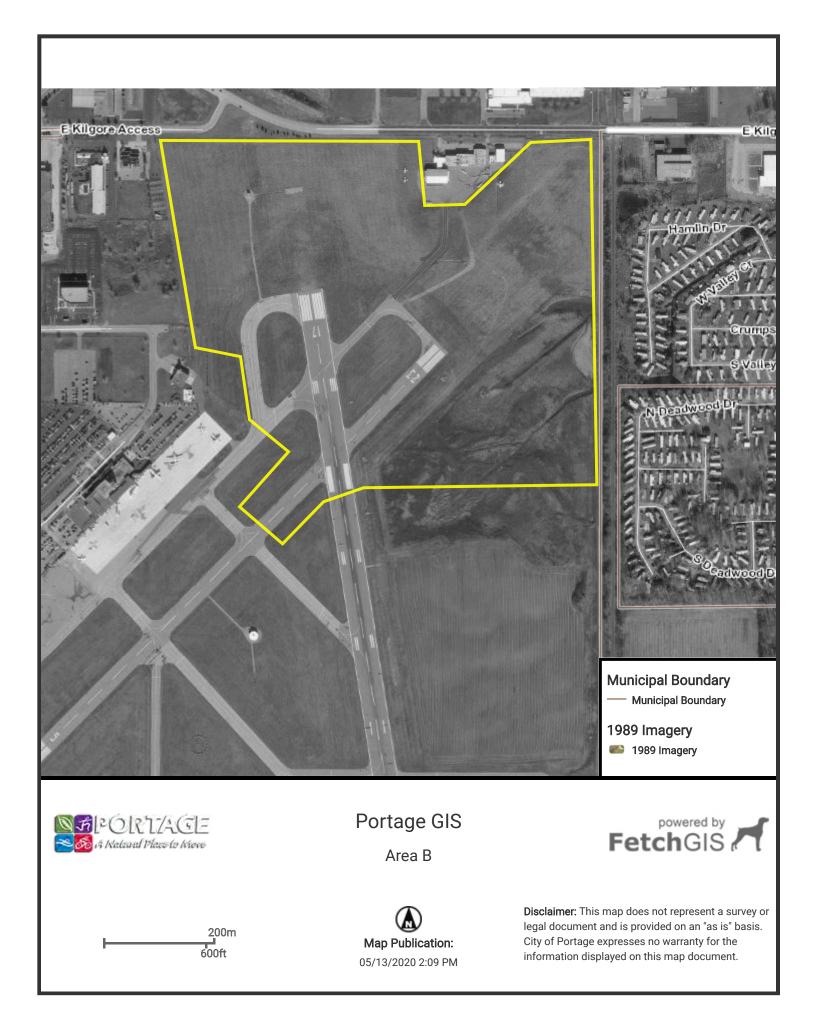






Area of Interest

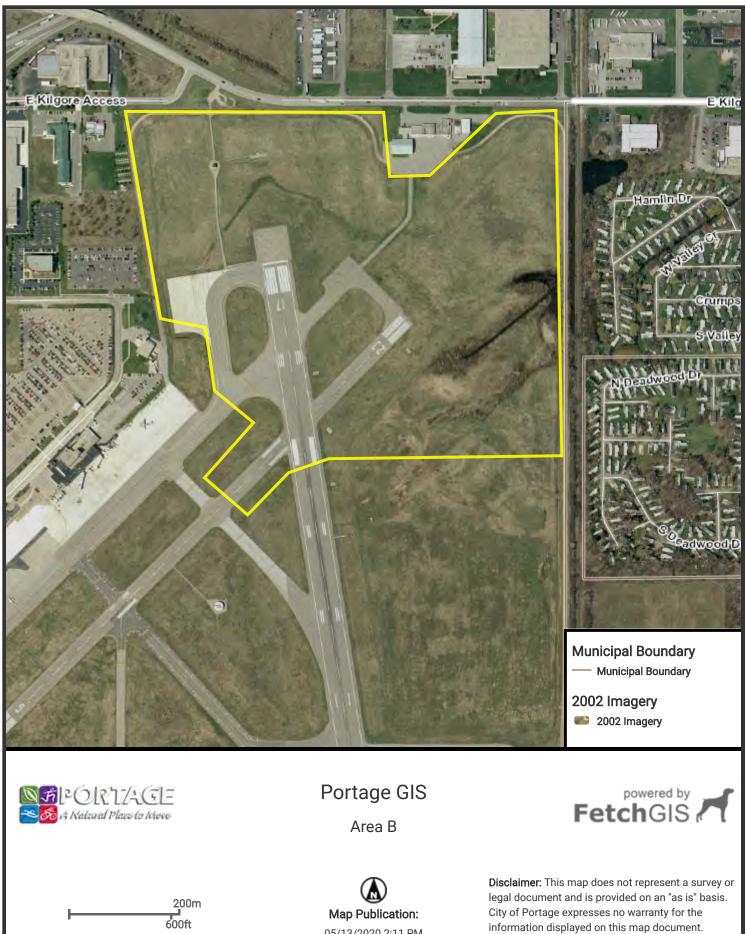

Area B



Map Publication: 05/13/2020 2:08 PM

600ft

legal document and is provided on an "as is" basis. City of Portage expresses no warranty for the information displayed on this map document.


Map Publication: 05/13/2020 2:10 PM

200m 600ft **Disclaimer:** This map does not represent a survey or legal document and is provided on an "as is" basis. City of Portage expresses no warranty for the information displayed on this map document.

Map Publication: 05/13/2020 2:10 PM

200m 600ft **Disclaimer:** This map does not represent a survey or legal document and is provided on an "as is" basis. City of Portage expresses no warranty for the information displayed on this map document.

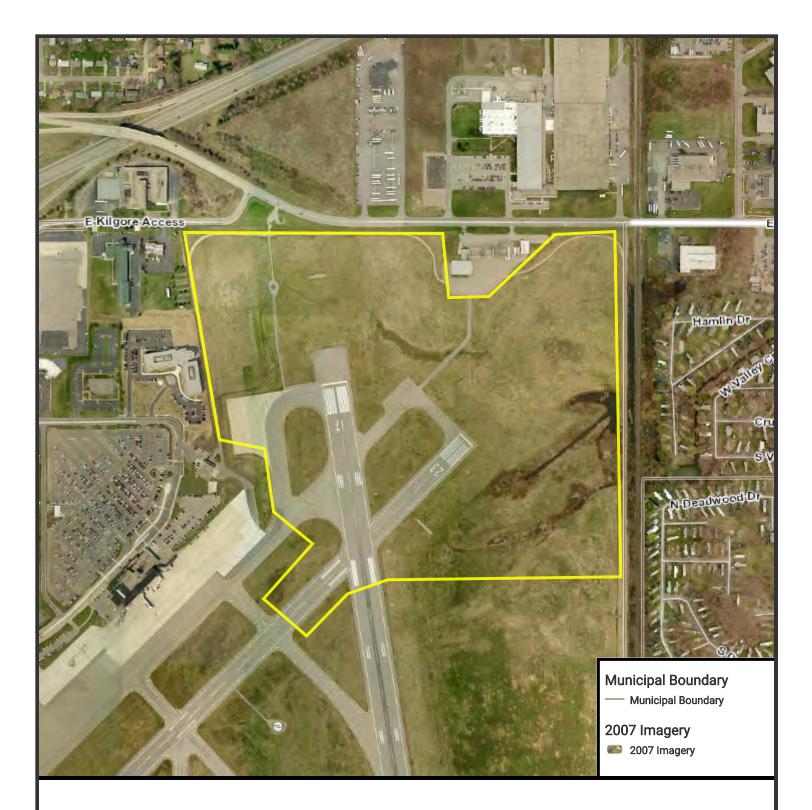
05/13/2020 2:11 PM

Portage GIS

Area B

Map Publication: 05/13/2020 2:12 PM

FetchGIS

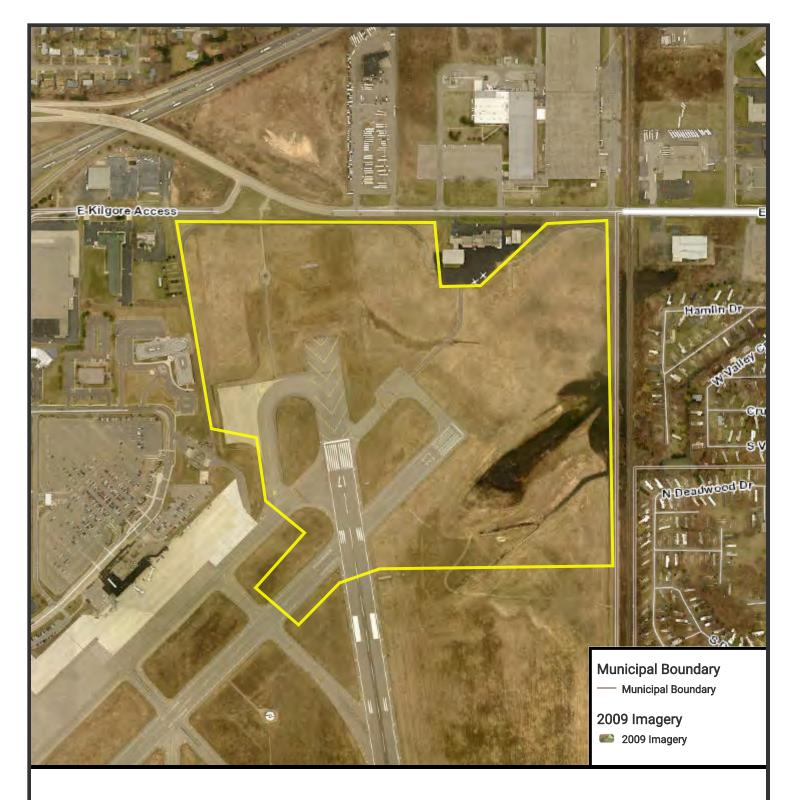


Portage GIS

Area B

Map Publication: 05/13/2020 2:13 PM

FetchGIS



Portage GIS

Area B

Map Publication: 05/13/2020 2:14 PM

FetchGIS



Portage GIS

Area B

Map Publication: 05/13/2020 2:14 PM

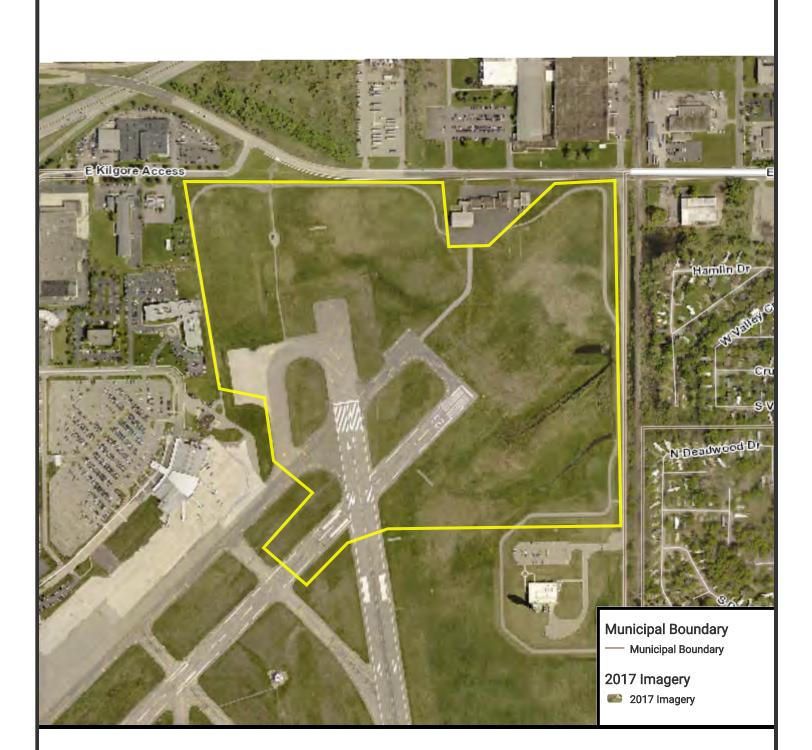
FetchGIS

Portage GIS

Area B

Map Publication: 05/13/2020 2:15 PM

FetchGIS

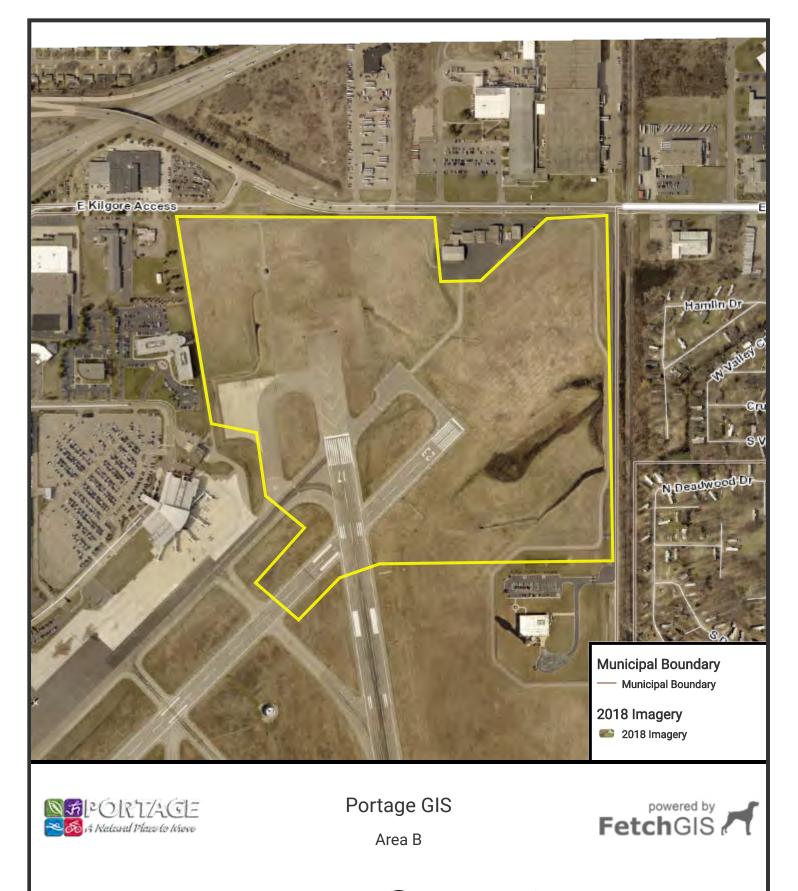


Portage GIS

Area B

Map Publication: 05/13/2020 2:16 PM

FetchGIS

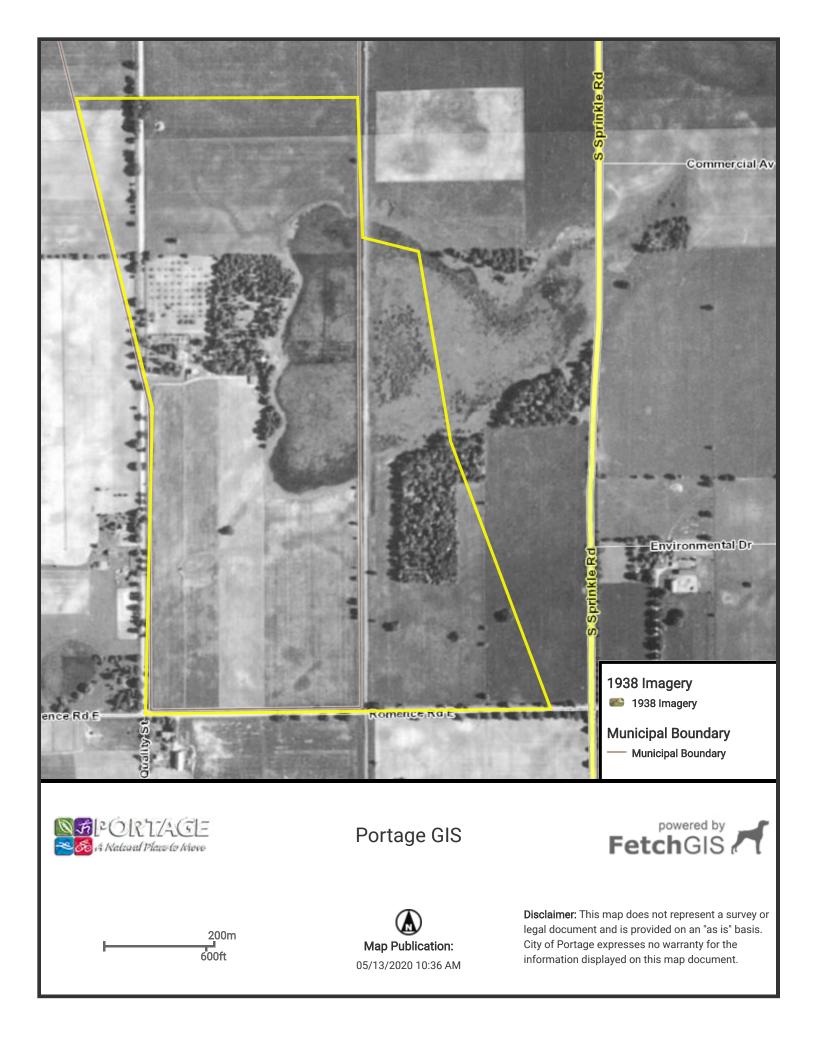


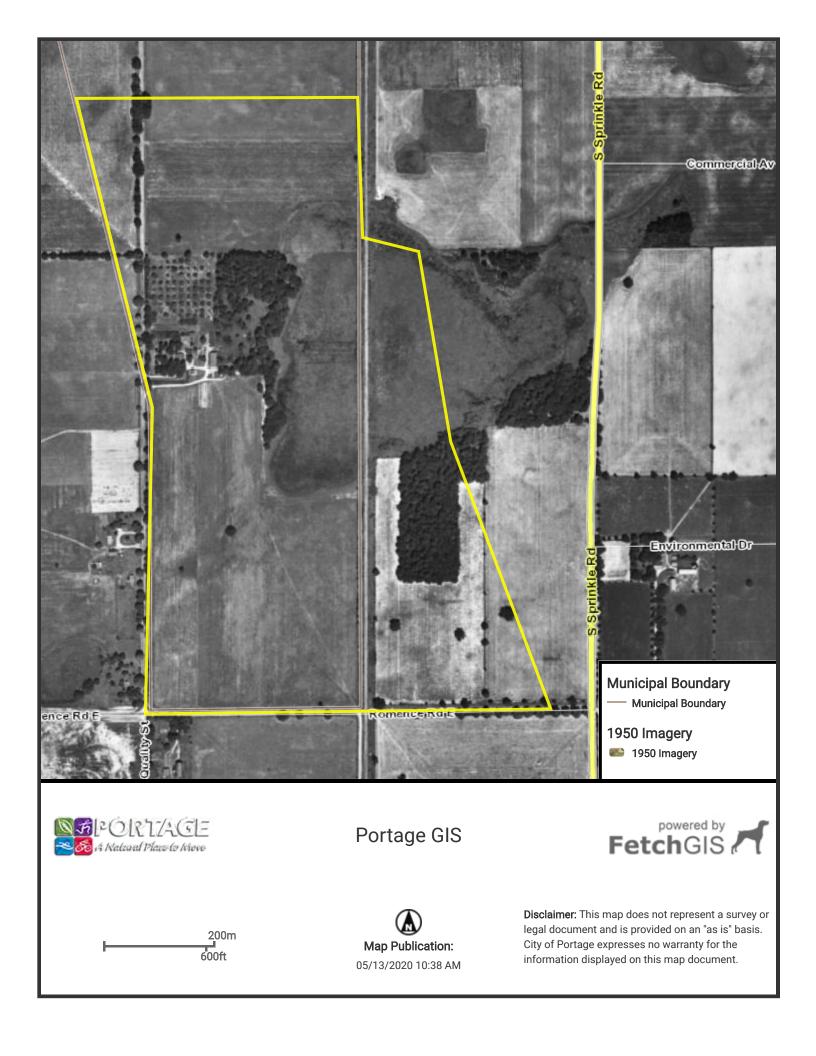
Portage GIS

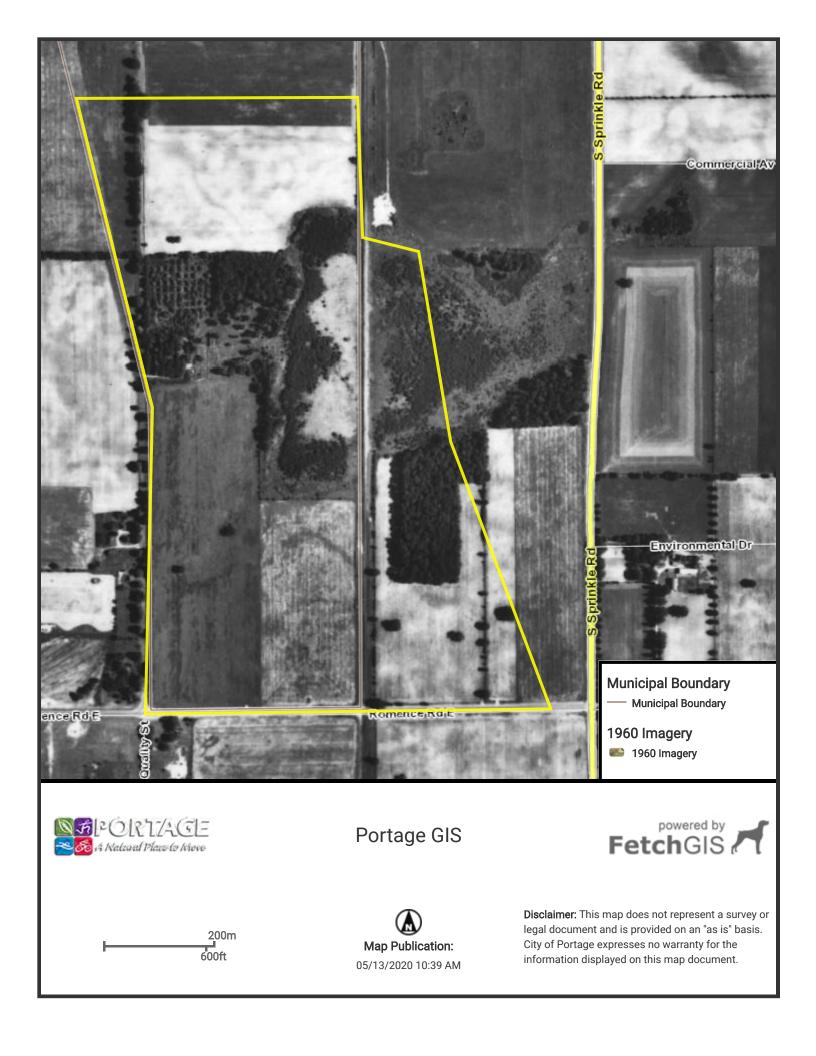
Area B

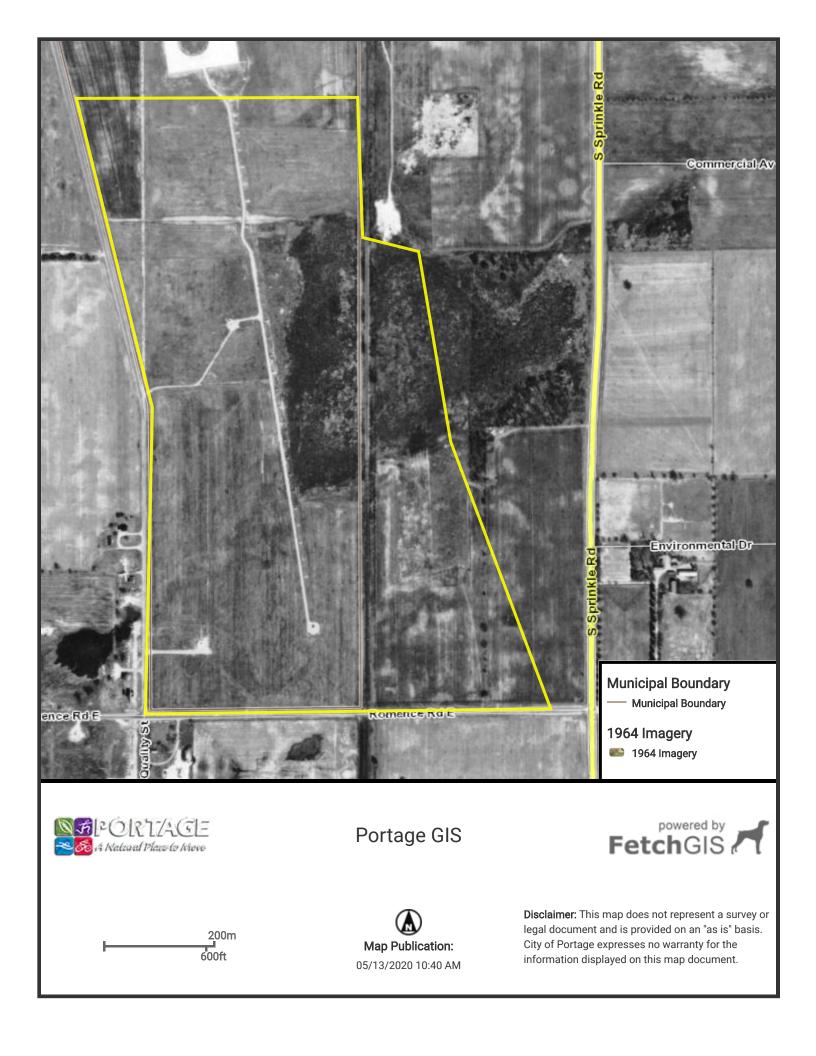
Map Publication: 05/13/2020 2:18 PM

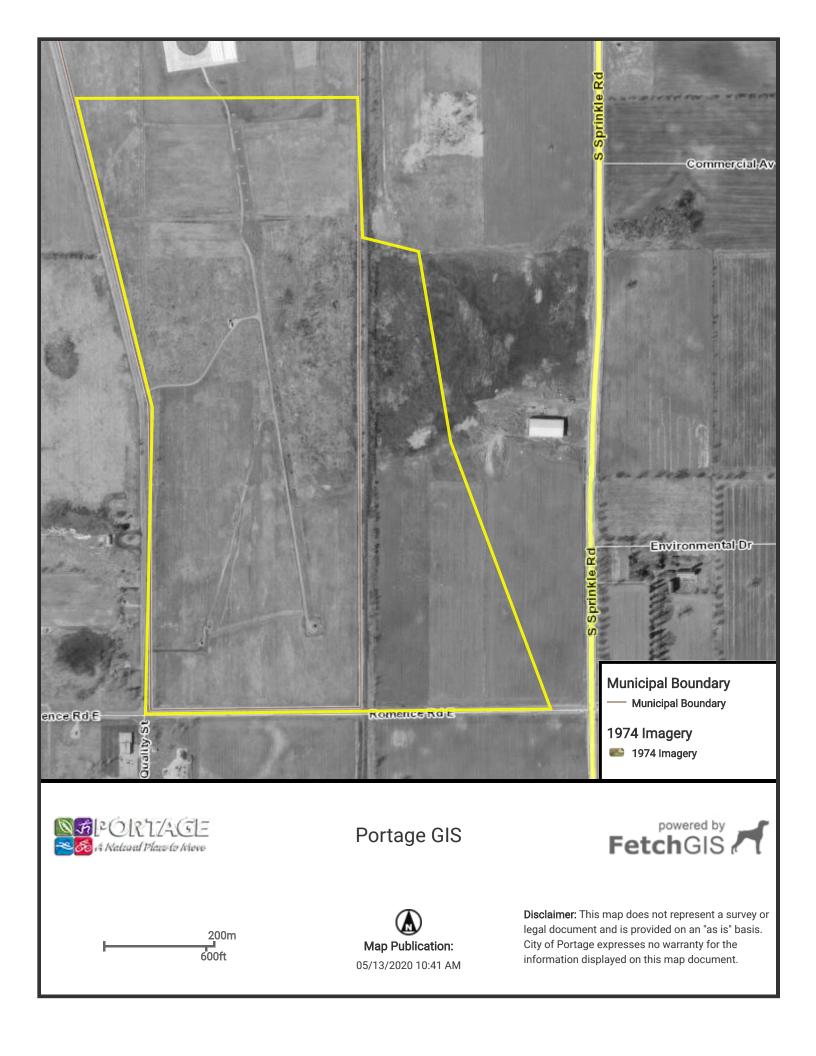
FetchGIS

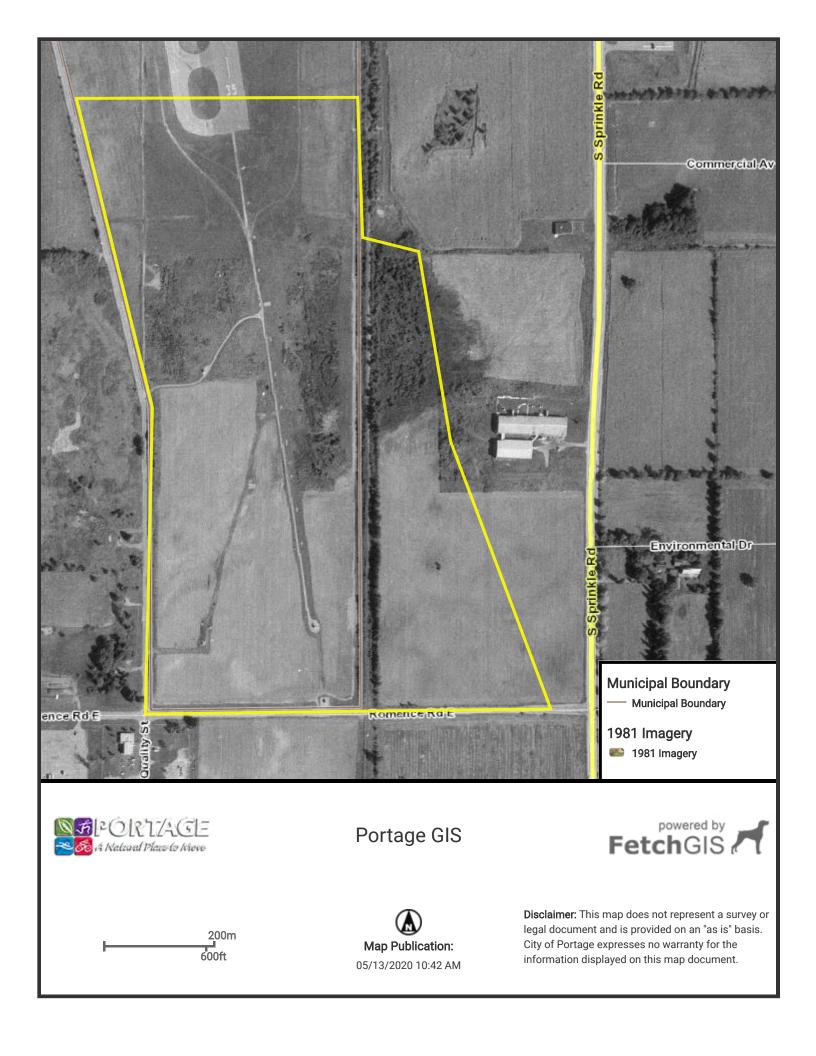


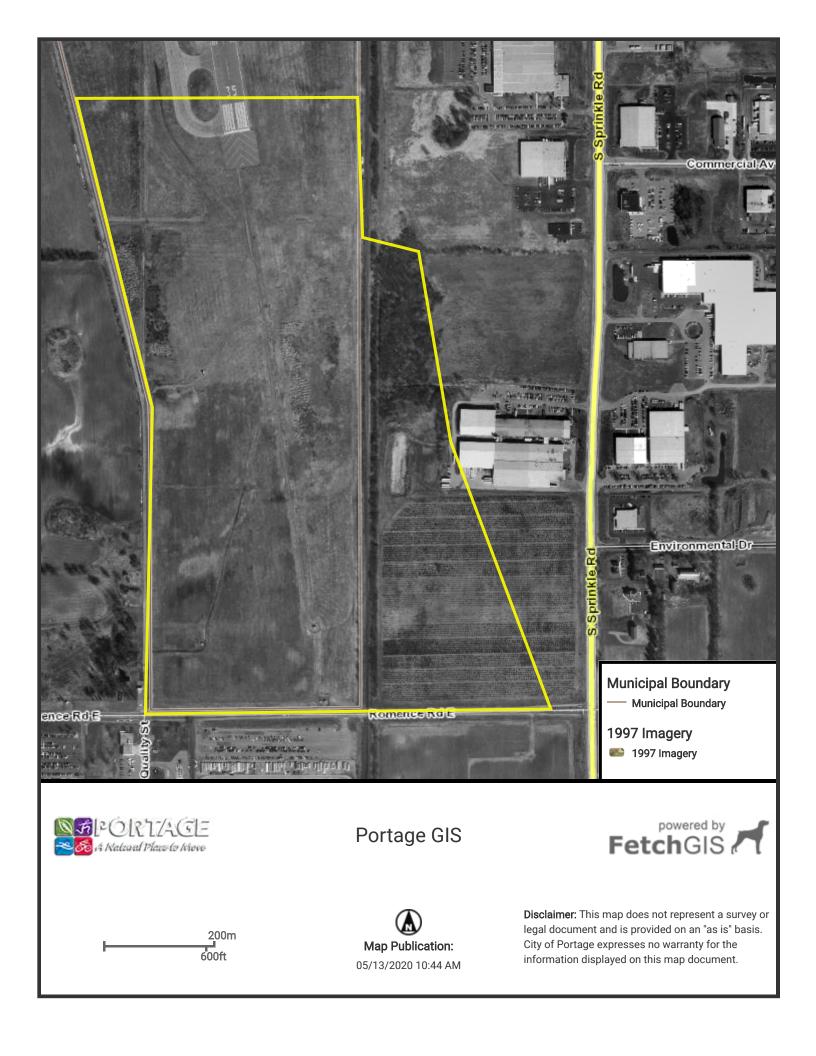

Map Publication: 05/13/2020 2:19 PM

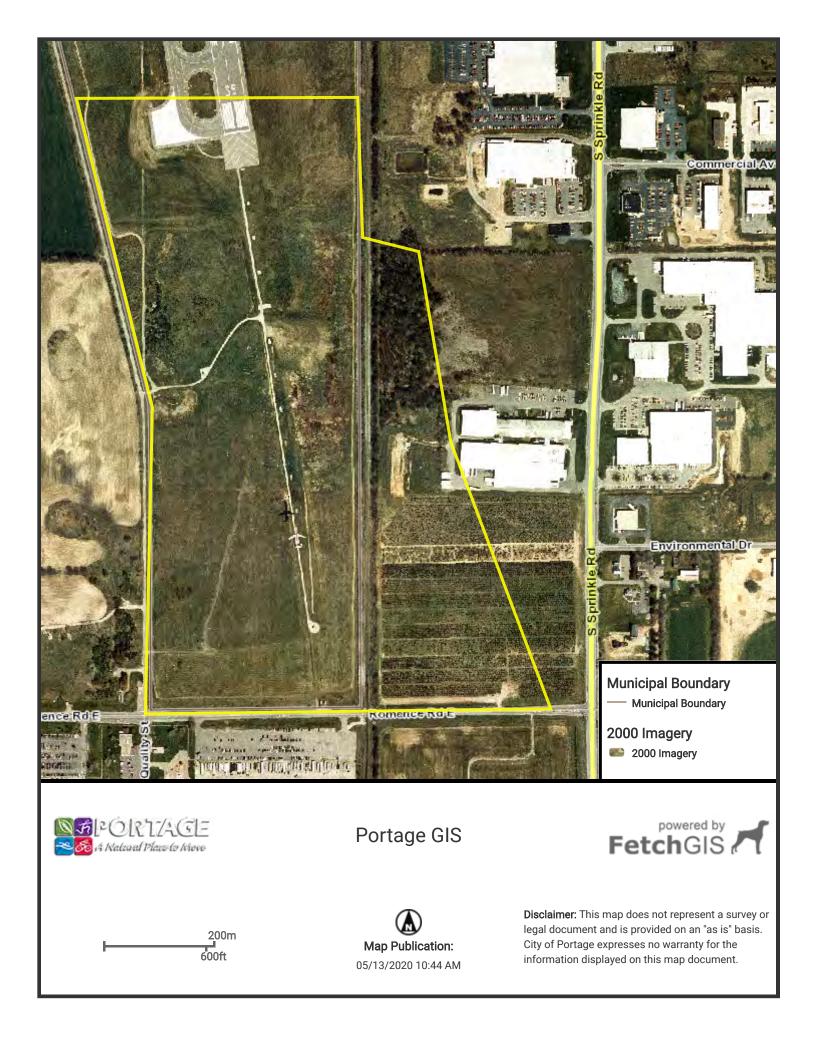

200m 600ft

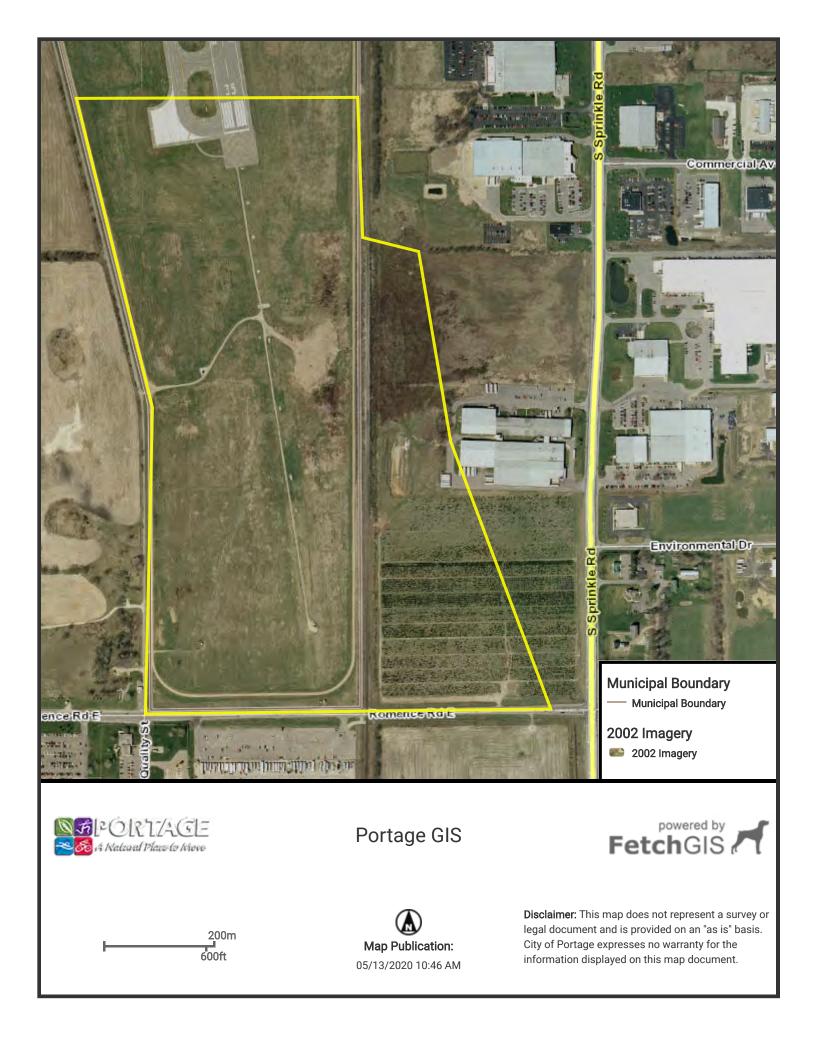

Area of Interest

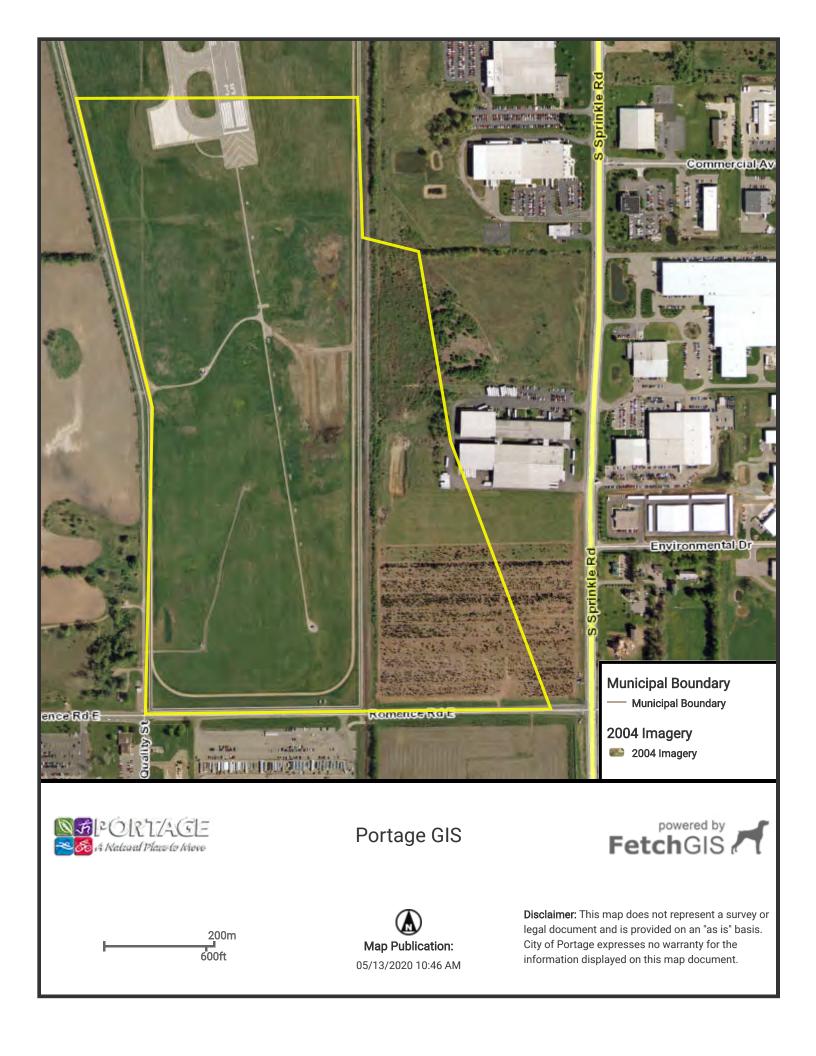

Area C

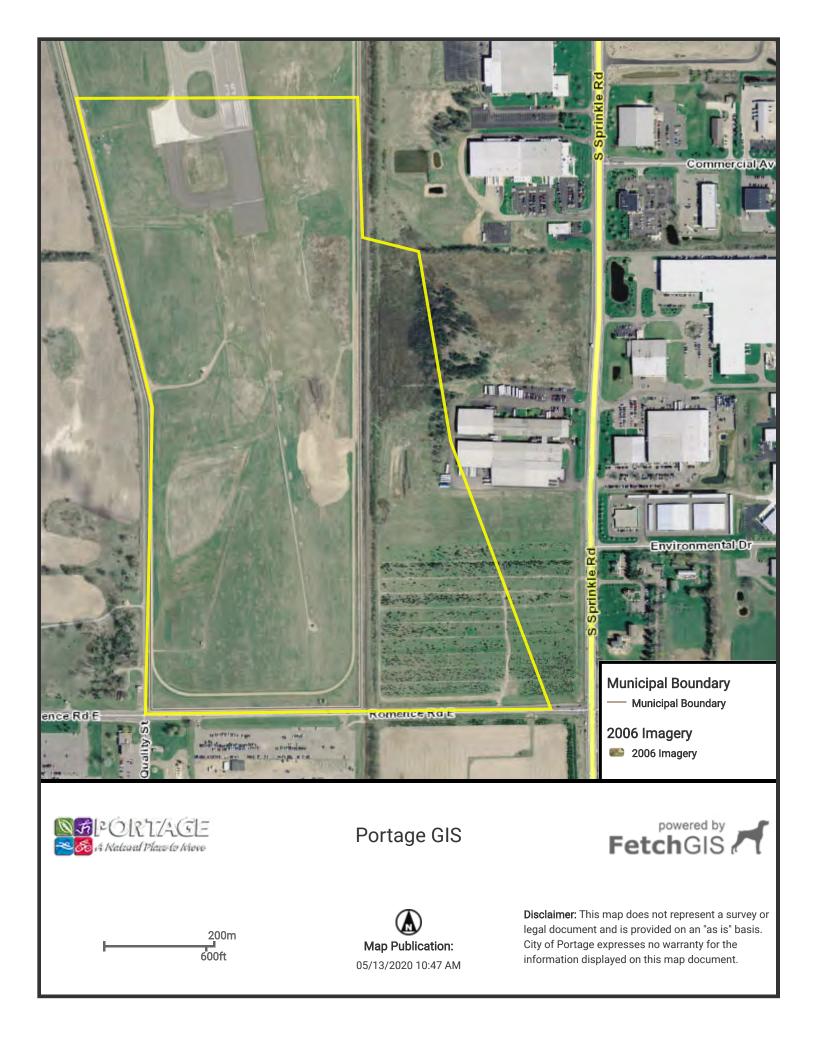


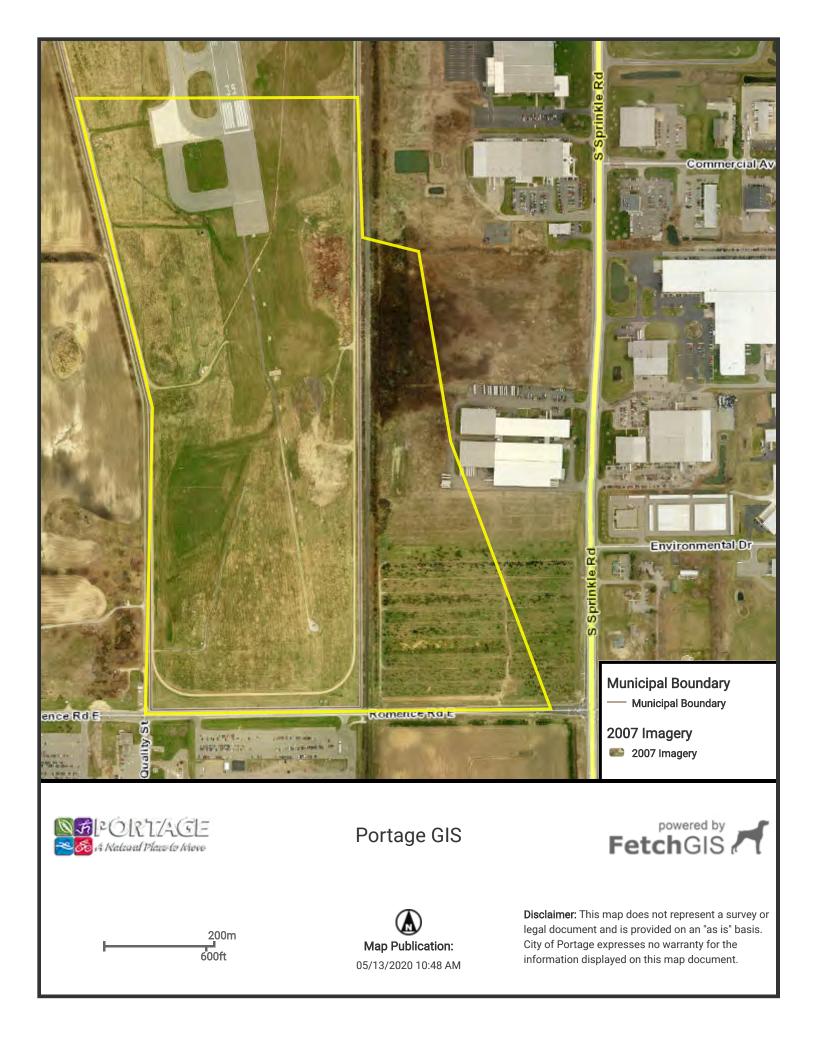


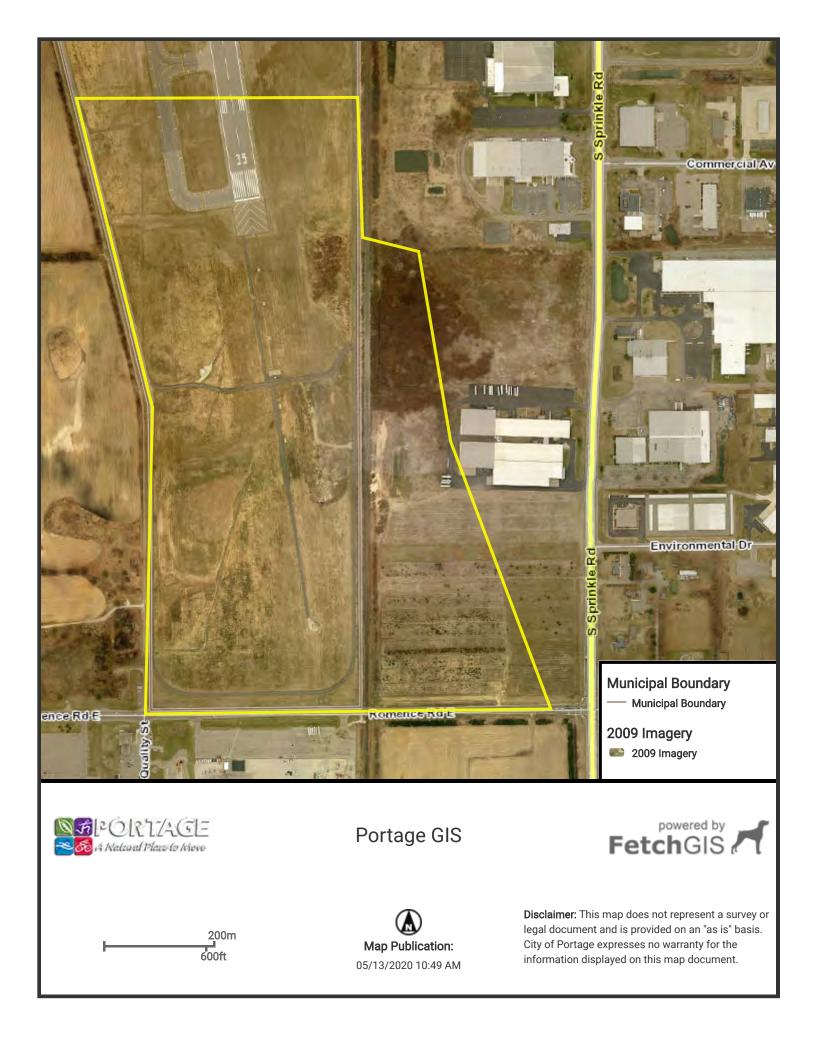


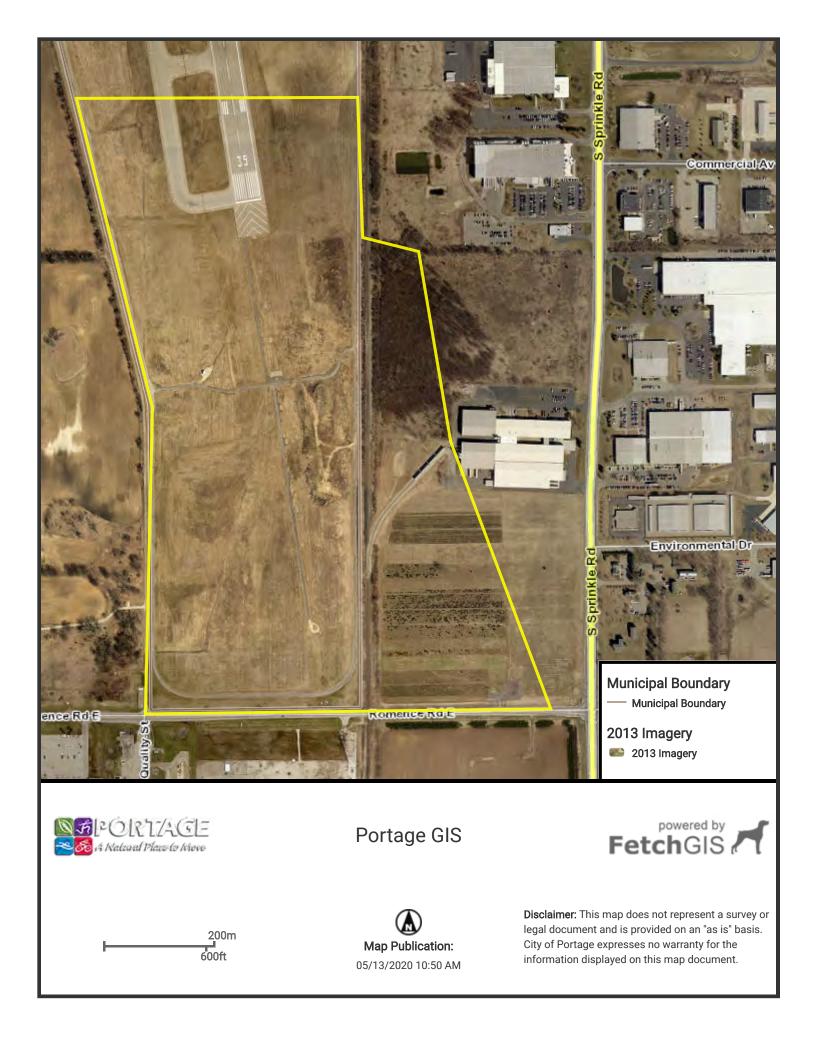


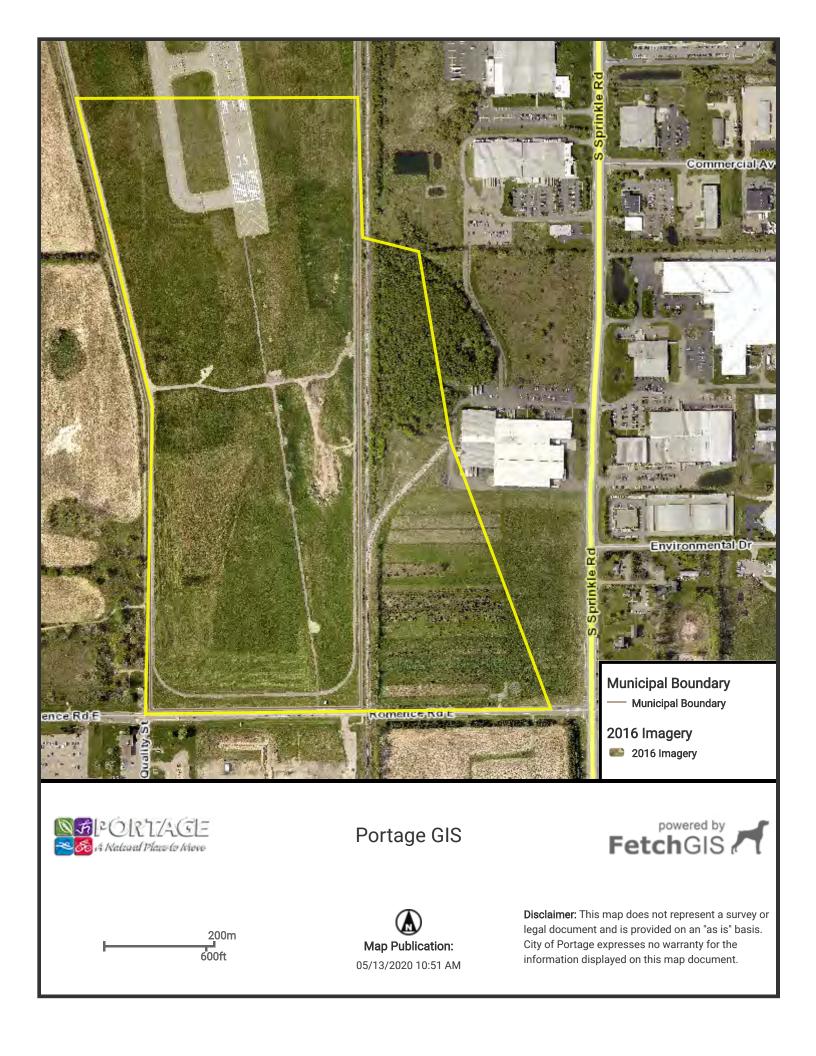


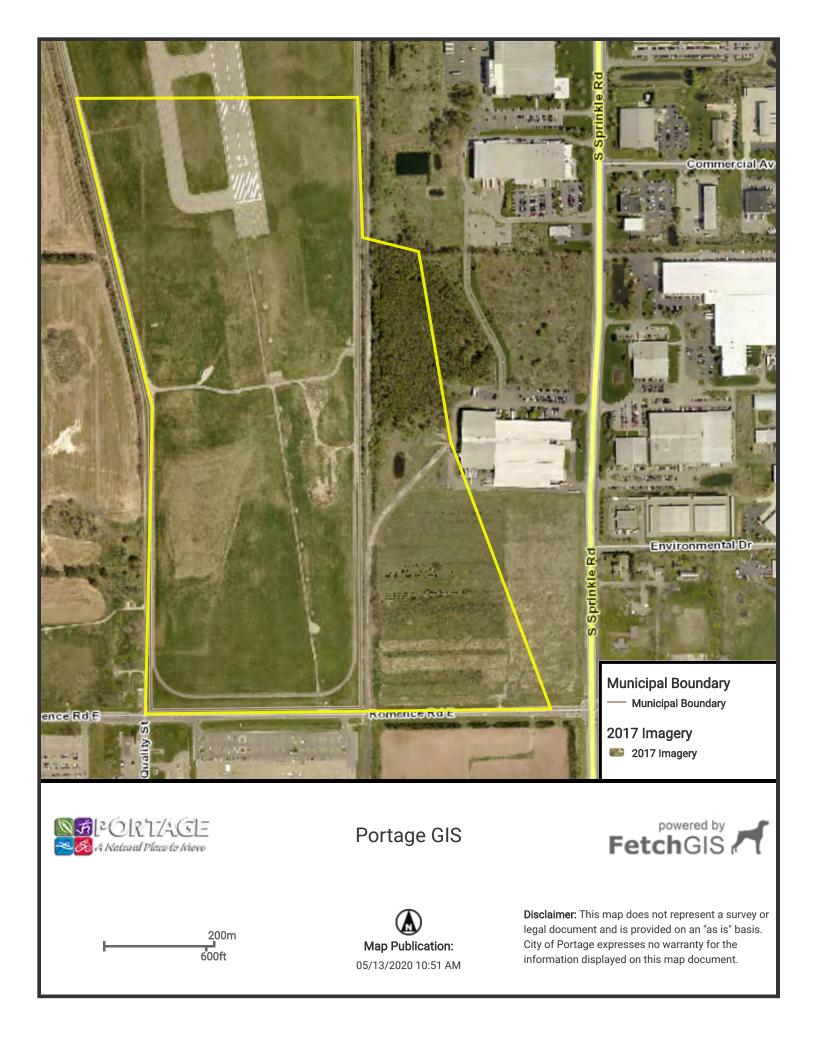


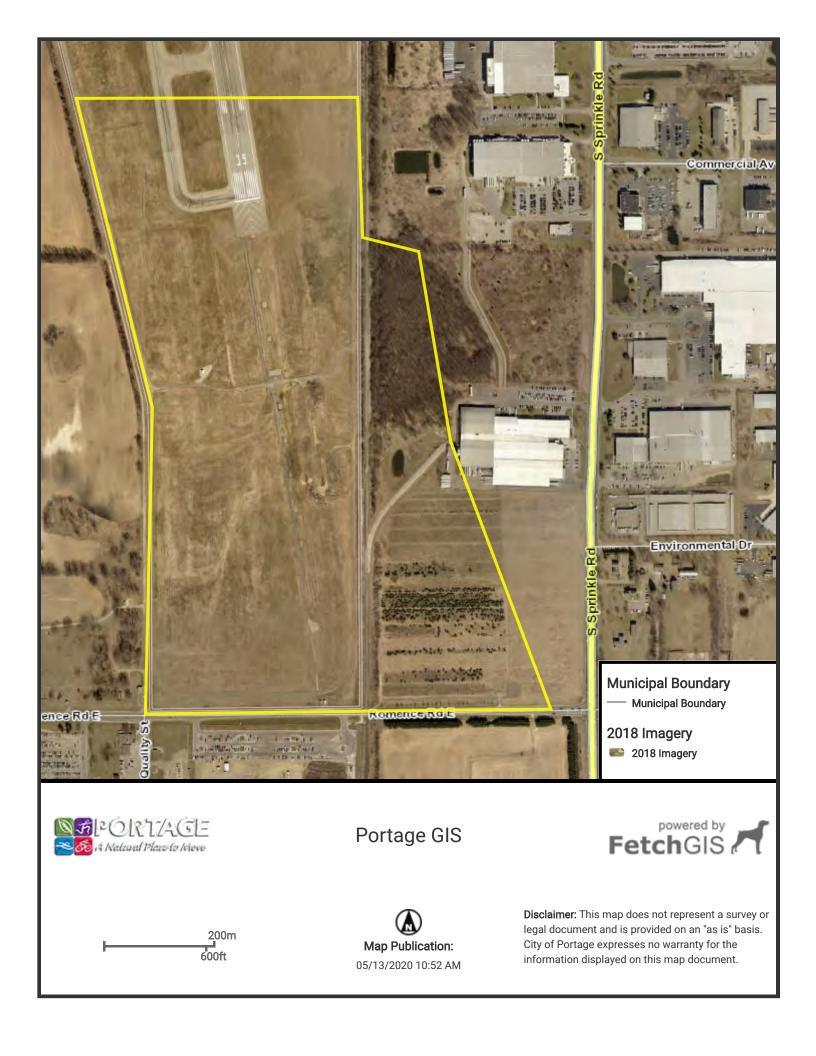


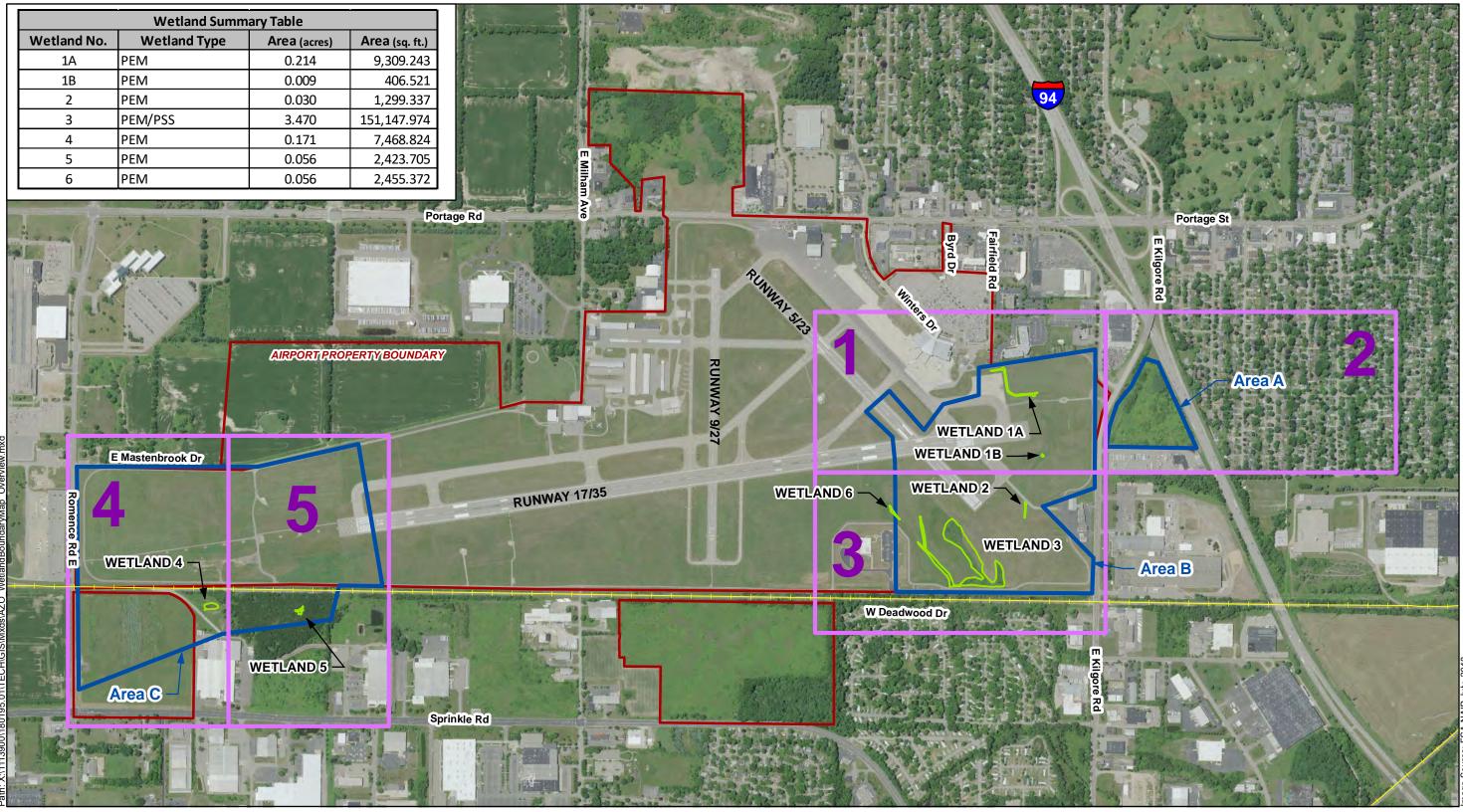


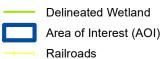




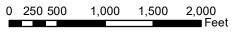








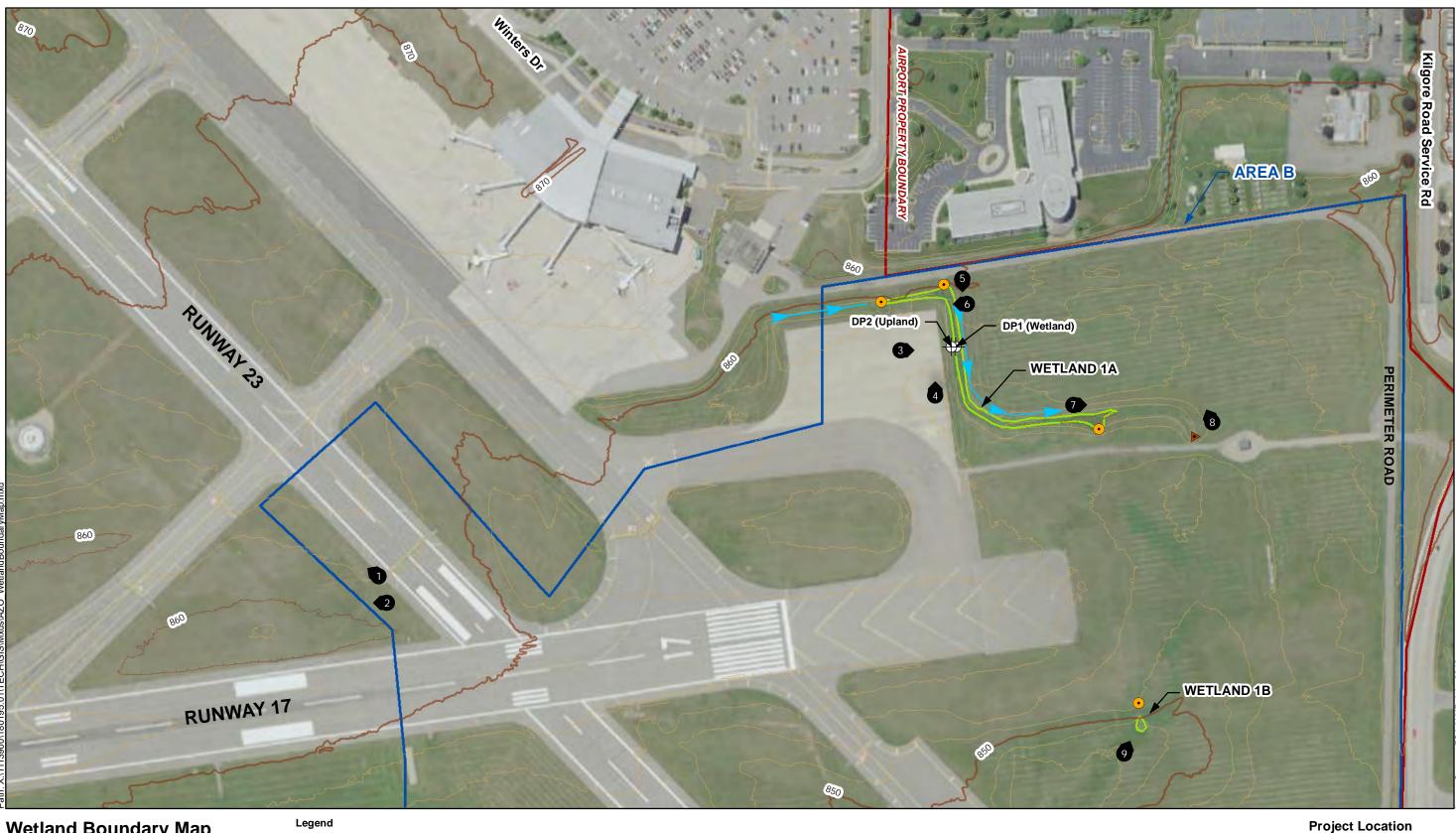
Appendix F. Wetland Boundary Maps



Legend

Approximate Airport Property Boundary

Map Sheet


Path: X:\1113900\180195.01

Data Sources:

Project Location

T3S, R11W, Sections 1, 2, 11, and 12 T2S, R11W, Section 35 Kalamazoo/Battle Creek Intl Airport City of Kalamazoo Kalamazoo County, MI LRR subregion: L USACE Regional Supplement: NC/NE Area of Interest = 246.4 acres Field work conducted: June 6 - 7, 2019 and August 19 - 21, 2019

Data Sources:

Airport Property Boundary: AZO Airport Layout Plan Contours: 2-foot elevation contours created by Remote Sensing & GIS Research and Outreach Services, Michigan State University, 2015. Obtained from Kalamazoo County GIS. Lakes: Obtained from Kalamazoo County GIS

Delineated Wetland \oplus Data Point Location

Photo Location with Number*

• Culvert

 \bullet Road Drain

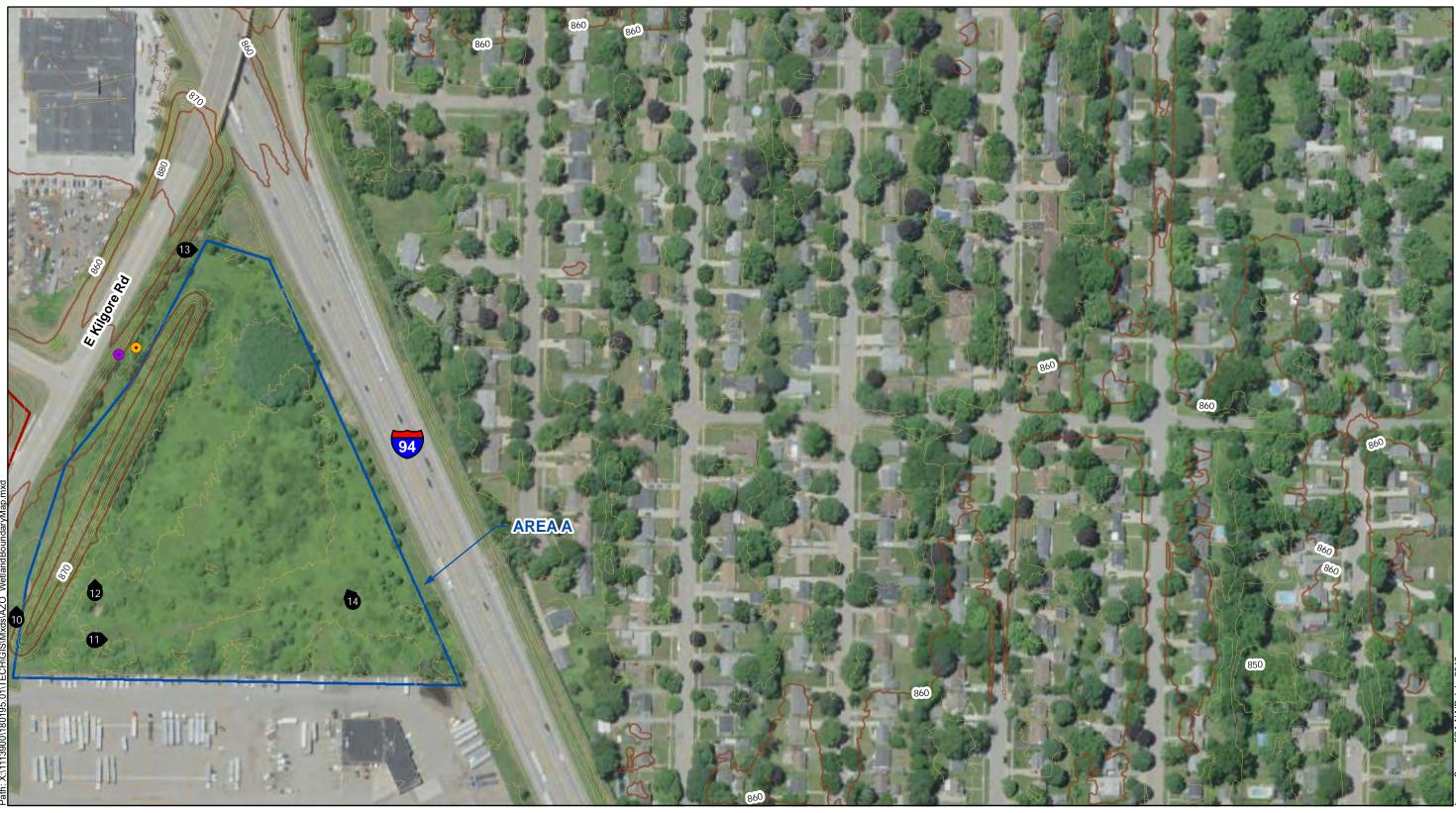
Vacated

 Area of Interest ---- Area of Interest (Obscured) Approximate Airport Property Boundary Flow Direction Lake/Pond Railroads

Contour Type*

- ----- Index
- Index Depression ------
- Intermediate
- Intermediate Depression

* Contour interval is 2 feet ** See Appendix H for Field Photographs



T3S, R11W, Sections 1, 2, 11, and 12 T2S, R11W, Section 35 Kalamazoo/Battle Creek Intl Airport City of Kalamazoo Kalamazoo County, MI LRR subregion: L USACE Regional Supplement: NC/NE Area of Interest = 246.4 acres Field work conducted: June 6 - 7, 2019 and August 19 - 21, 2019

Feet

► Z

Data Sources:

Airport Property Boundary: AZO Airport Layout Plan Contours: 2-foot elevation contours created by Remote Sensing & GIS Research and Outreach Services, Michigan State University, 2015. Obtained from Kalamazoo County GIS. Lakes: Obtained from Kalamazoo County GIS

Legend

- Delineated Wetland
- \oplus Data Point Location
- Photo Location with Number**
- Culvert
- Road Drain
- Vacated

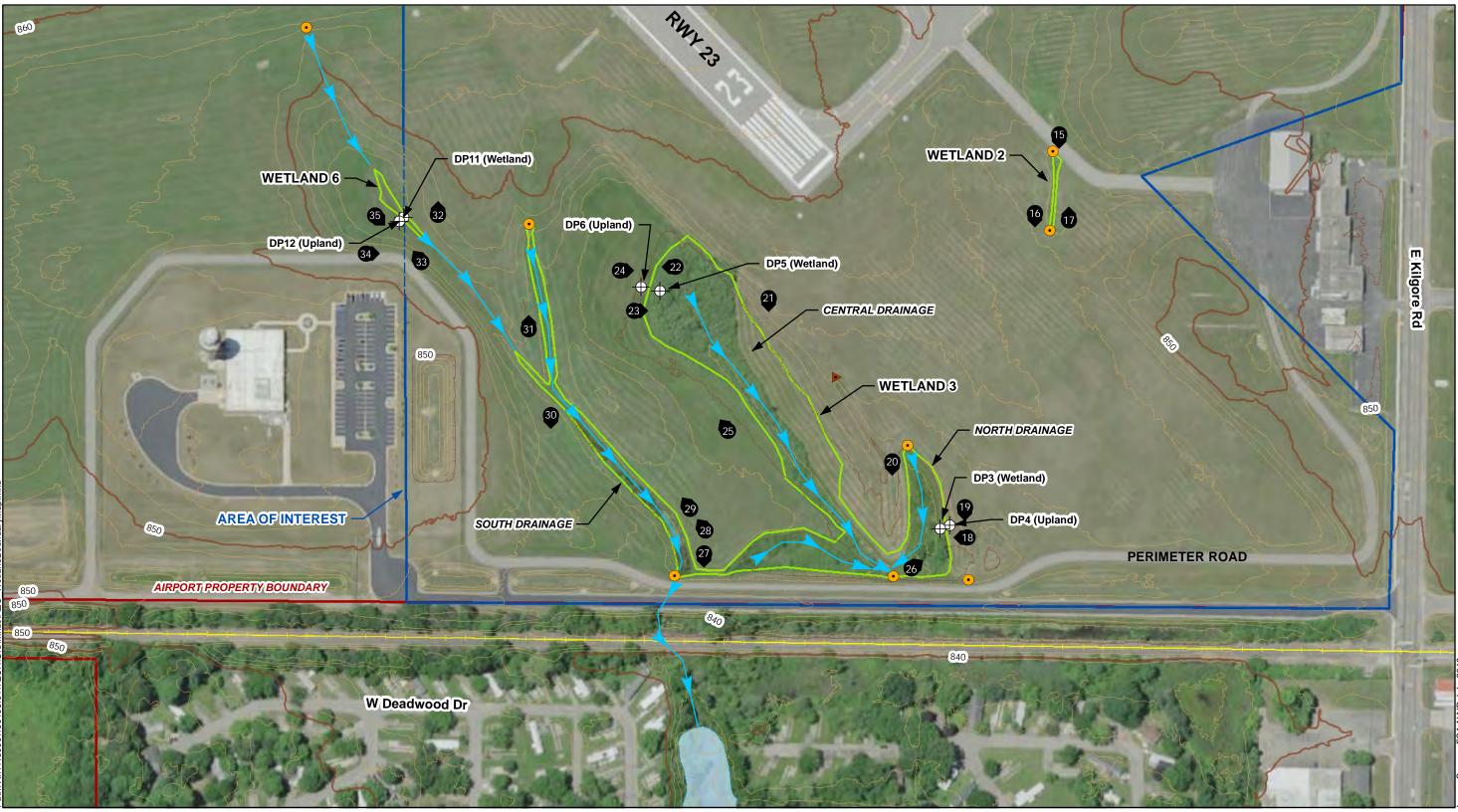
- Area of Interest ---- Area of Interest (Obscured) Approximate Airport Property Boundary Flow Direction Lake/Pond
 - Railroads

Index Depression Intermediate Intermediate Depression

Contour Type*

----- Index

- * Contour interval is 2 feet ** See Appendix H for Field Photographs



Project Location

T3S, R11W, Sections 1, 2, 11, and 12 T2S, R11W, Section 35 Kalamazoo/Battle Creek Intl Airport Kalamazoo/Battle Creek Intl Airport City of Kalamazoo Kalamazoo County, MI LRR subregion: L USACE Regional Supplement: NC/NE Area of Interest = 246.4 acres Field work conducted: June 6 - 7, 2019 and August 19 - 21, 2019

Data Sources:

Airport Property Boundary: AZO Airport Layout Plan Contours: 2-foot elevation contours created by Remote Sensing & GIS Research and Outreach Services, Michigan State University, 2015. Obtained from Kalamazoo County GIS. Lakes: Obtained from Kalamazoo County GIS

Legend

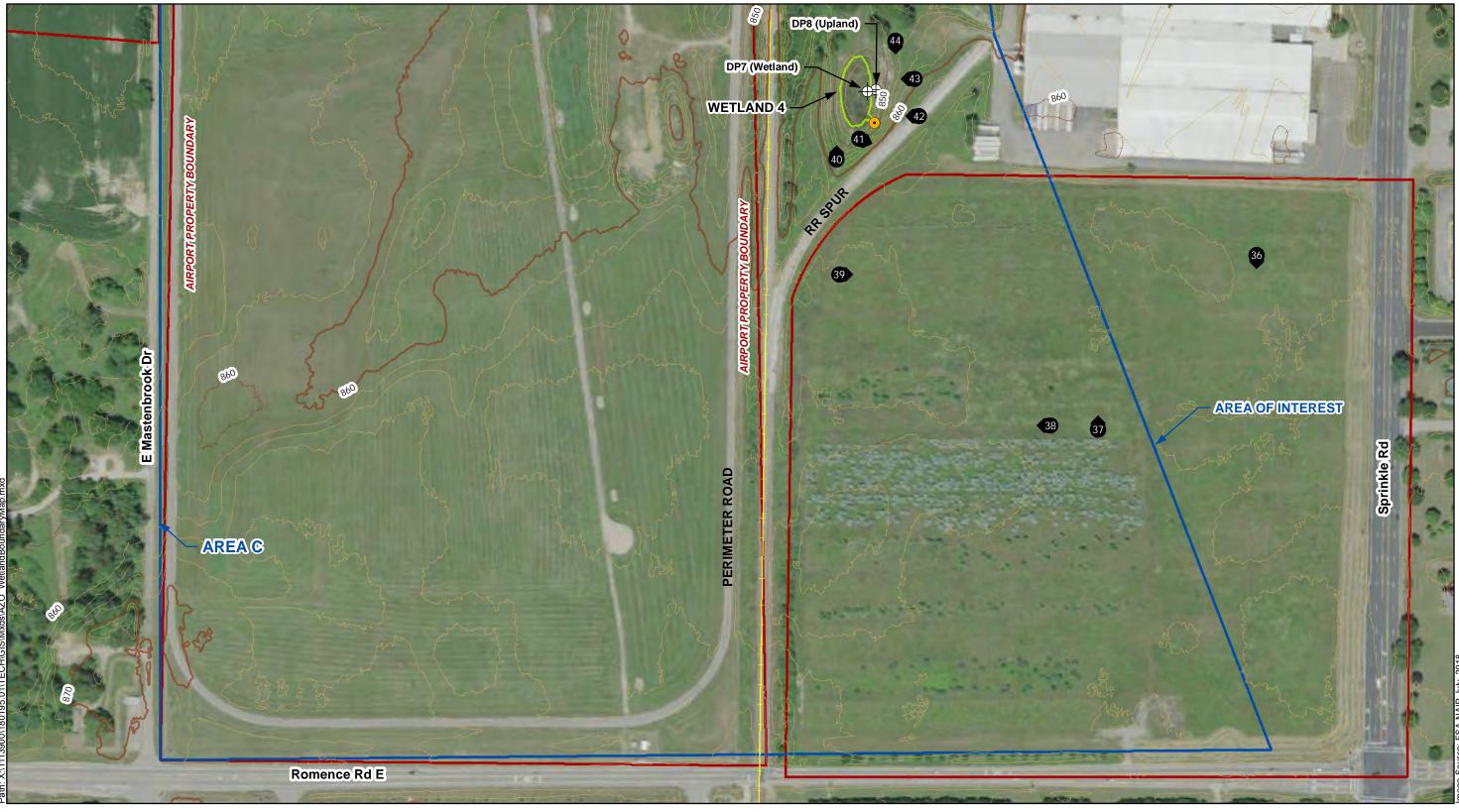
Delineated Wetland \oplus

- Data Point Location
- Photo Location with Number*
- Culvert
- \bullet
- Road Drain Vacated

 Area of Interest ---- Area of Interest (Obscured) Approximate Airport Property Boundary Flow Direction Lake/Pond Railroads

Contour Type* ----- Index

- Index Depression
- Intermediate
- Intermediate Depression
- * Contour interval is 2 feet ** See Appendix H for Field Photographs
- Map 3 of 5
- 0 50 100 200 300


Project Location

T3S, R11W, Sections 1, 2, 11, and 12 T2S, R11W, Section 35 Kalamazoo/Battle Creek Intl Airport City of Kalamazoo Kalamazoo County, MI LRR subregion: L USACE Regional Supplement: NC/NE Area of Interest = 246.4 acres Field work conducted: June 6 - 7, 2019 and August 19 - 21, 2019

- Z

Data Sources:

Airport Property Boundary: AZO Airport Layout Plan Contours: 2-foot elevation contours created by Remote Sensing & GIS Research and Outreach Services, Michigan State University, 2015. Obtained from Kalamazoo County GIS. Lakes: Obtained from Kalamazoo County GIS

Legend

- Delineated Wetland \oplus Data Point Location Photo Location with Number*
- Culvert
- \bullet Road Drain
- Vacated

- Area of Interest ---- Area of Interest (Obscured) Approximate Airport Property Boundary Flow Direction Lake/Pond Railroads
 - Contour Type*
 - ----- Index

 - Index Depression
 - Intermediate
 - Intermediate Depression
 - * Contour interval is 2 feet ** See Appendix H for Field Photographs

Project Location

T3S, R11W, Sections 1, 2, 11, and 12 T2S, R11W, Section 35 Kalamazoo/Battle Creek Intl Airport City of Kalamazoo Kalamazoo County, MI LRR subregion: L USACE Regional Supplement: NC/NE Area of Interest = 246.4 acres Field work conducted: June 6 - 7, 2019 and August 19 - 21, 2019

Data Sources:

Airport Property Boundary: AZO Airport Layout Plan Contours: 2-foot elevation contours created by Remote Sensing & GIS Research and Outreach Services, Michigan State University, 2015. Obtained from Kalamazoo County GIS. Lakes: Obtained from Kalamazoo County GIS

Legend

Delineated Wetland

- \oplus Data Point Location
- Photo Location with Number**
- Culvert
- \bullet Road Drain
- - Vacated
- Area of Interest ---- Area of Interest (Obscured) Approximate Airport Property Boundary Flow Direction Lake/Pond Railroads

Contour Type*

- ----- Index
- Index Depression
- Intermediate
- Intermediate Depression
- * Contour interval is 2 feet ** See Appendix H for Field Photographs
- Map 5 of 5
- 0 50 100 200 300

Ν

Project Location

T3S, R11W, Sections 1, 2, 11, and 12 T2S, R11W, Section 35 Kalamazoo/Battle Creek Intl Airport City of Kalamazoo Kalamazoo County, MI LRR subregion: L USACE Regional Supplement: NC/NE Area of Interest = 246.4 acres Field work conducted: June 6 - 7, 2019 and August 19 - 21, 2019 Appendix G. Data Sheets

WETLAND DETERMINATION DA	rmy Corps of Engineers TA SHEET – Northcent 4; the proponent agency	ral and Northeast Region	Requirement Control Symbol EXEMPT (Authority: AR 335-15, paragraph 5-2a)						
Project/Site: Kalamazoo Runway 17/35 Exte	ension EA	City/County: Kalamazoo	Sampling Date: 06/07/2019						
Applicant/Owner: Kalamazoo County		S	tate: MI Sampling Point: DP1 WET						
Investigator(s): Brauna Hartzell & Tom Ward	d, Mead & Hunt, Inc.	Section, Township, Ra	nge: Section 2, T3S, R11W						
Landform (hillside, terrace, etc.): Ditch Bot	tom Local r	elief (concave, convex, none): C	oncave Slope %: <1%						
Subregion (LRR or MLRA): LRR L, MLRA 9									
Soil Map Unit Name: Urban land-Kalamazo									
Are climatic / hydrologic conditions on the site	e typical for this time of year?	Yes No	X (If no, explain in Remarks.)						
Are Vegetation , Soil X , or Hydro	blogy X significantly distur	bed? Are "Normal Circums	tances" present? Yes X No						
Are Vegetation , Soil , or Hydro			ny answers in Remarks.)						
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transects, important features, etc.									
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present?	Yes X No Yes X No Yes X No	Is the Sampled Area within a Wetland? If yes, optional Wetland Site I	Yes <u>X</u> No D: 1						
Remarks: (Explain alternative procedures h A WETS analysis of the antecedent precipit investigation. Datapoint was taken within a c	ation indicates the hydrologic c	conditions on the site were wetter	than normal range at the time of						
HYDROLOGY									
Wetland Hydrology Indicators:		Secondar	/ Indicators (minimum of two required)						
Primary Indicators (minimum of one is requi	red; check all that apply)	Surfa	ce Soil Cracks (B6)						
Surface Water (A1)	Water-Stained Leaves (I		age Patterns (B10)						
High Water Table (A2)	Aquatic Fauna (B13)		Trim Lines (B16)						
x Saturation (A3)	Marl Deposits (B15)		eason Water Table (C2)						
Water Marks (B1)	Hydrogen Sulfide Odor (C1) Crayfi	sh Burrows (C8)						

Wetland Hydrology Indicators:					Secondary Indicators (minimum of two required)		
Primary Indicators (minimum of one is	Surface Soil Cracks (B6)						
Surface Water (A1)		Water-	Stained Leaves (B9)		Drainage Patterns (B10)		
High Water Table (A2)		Aquati	c Fauna (B13)		Moss Trim Lines (B16)		
x Saturation (A3)							
Water Marks (B1)	Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish Burrows (C8)						
Sediment Deposits (B2)		Oxidize	ed Rhizospheres on Li	iving Roots (C3)	x Saturation Visible on Aerial Imagery (C9)		
x Drift Deposits (B3)		Preser	nce of Reduced Iron (C	C4)	Stunted or Stressed Plants (D1)		
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) x Geomorphic Position (D2)							
Iron Deposits (B5) Thin Muck Surface (C7) Shallow Aquitard (D3)							
Inundation Visible on Aerial Image	Microtopographic Relief (D4)						
Sparsely Vegetated Concave Surf	ace (B8)				x FAC-Neutral Test (D5)		
Field Observations:							
Surface Water Present? Yes	Ν	lo x	Depth (inches):				
Water Table Present? Yes	N	lo x	Depth (inches):				
Saturation Present? Yes x	N	10	Depth (inches):	2 Wetlan	d Hydrology Present? Yes X No		
(includes capillary fringe)	_						
Describe Recorded Data (stream gaug	e, monito	oring well,	aerial photos, previou	us inspections), if	available:		
Remarks:							

Wetland hydrology is present and indicated. Saturation (A3) within sampling plot and seen on aerial photos taken in 2017 (Google Earth). Standing water within 15'.

Sampling Point: DP1 WET

Ture Oterham (Distriction 2001)	Absolute	Dominant	Indicator	Demission Testandalasi
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC:(A)
3			<u> </u>	Total Number of Dominant
4				Species Across All Strata: 2 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC:0000 (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of:Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species x 1 =20
1				FACW species 75 x 2 = 150
2				FAC species 0 x 3 = 0
3				FACU species <u>5</u> x 4 = <u>20</u>
4				UPL species 0 x 5 = 0
5.				Column Totals: 100 (A) 190 (B)
6.				Prevalence Index = B/A = 1.90
7.				Hydrophytic Vegetation Indicators:
	:	=Total Cover		X 1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				X 2 - Dominance Test is >50%
1. Phalaris arundinacea	45	Yes	FACW	X 3 - Prevalence Index is $\leq 3.0^1$
2. Solidago gigantea	30	Yes	FACW	4 - Morphological Adaptations ¹ (Provide supporting
3. Carex vulpinoidea	10	No	OBL	data in Remarks or on a separate sheet)
4. Lyconus americanus	10	No	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Cirsium arvense	5	No	FACU	¹ Indicators of hydric soil and watland hydrology must
6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9.				diameter at breast height (DBH), regardless of height.
10.				Senting/shruh Weady plants loss than 2 in DDU
11				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12.				
	100	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				
1,				Woody vines – All woody vines greater than 3.28 ft in height.
0				
3.				Hydrophytic
4.				Vegetation Present? Yes X No
		=Total Cover		
Pomarka: (Include abote numbers bare as an a same				1
Remarks: (Include photo numbers here or on a sepa	rate sneet.)			

Hydrophytic vegetation is present. Also present is Schoenoplectus tabernaemontani and Scirpus cyperinus. Approximately 10' separates the paired data points (DP2 upland) with about 1' change in elevation.

Depth	Matrix			x Featu				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-6	10YR 3/1	100					Loamy/Clayey	
6-12	10YR 3/1	95	7.5YR 4/4	5	С	М	Loamy/Clayey	Prominent redox concentrations
12-18	7.5YR 3/2	100					Loamy/Clayey	With small pebbles (fill?)
	·	·					·	
	oncentration, D=Dep	lotion PM	-Poducod Matrix M		kod San	d Graine	² Location: Pl	L=Pore Lining, M=Matrix.
Hydric Soil				10-11/185	skeu Sano	J Grains.		or Problematic Hydric Soils ³ :
Black H Hydroge Stratifie Depleter Thick Da Sandy M Sandy F Sandy F Stripped	pipedon (A2) istic (A3) en Sulfide (A4) d Layers (A5) d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7)	e (A11)	Polyvalue Belo MLRA 149B Thin Dark Surfa High Chroma S Loamy Mucky I Loamy Gleyed Depleted Matri: x Redox Dark Su Depleted Dark Redox Depress Marl (F10) (LR Red Parent Ma) Sands (S Mineral Matrix (x (F3) urface (F Surface sions (F R K, L)) (LRR R S11) (LRI (F1) (LR (F2) =6) = (F7) 8)	, MLRA 1 R K, L) R K, L)	Coast Pr 5 cm Mu Polyvalue Thin Darl Iron-Man Piedmon Red Pare Very Sha Mesic Sp	ck (A10) (LRR K, L, MLRA 149B) rairie Redox (A16) (LRR K, L, R) cky Peat or Peat (S3) (LRR K, L, R) e Below Surface (S8) (LRR K, L) k Surface (S9) (LRR K, L) nganese Masses (F12) (LRR K, L, R) the Floodplain Soils (F19) (MLRA 149B) ent Material (F21) (outside MLRA 145 allow Dark Surface (F22) bodic (TA6) (MLRA 144A, 145, 149B) xplain in Remarks)
³ Indicators o	of hydrophytic vegetat	ion and we	etland hydrology mu	ust be p	resent, u	nless dist	urbed or problematic.	
Restrictive Type:	Layer (if observed): 						Hydric Soil Presen	nt? Yes <u>X</u> No
Hydric soils	are present. Constru	cted ditch.	Hydric soils indicat	or Redd	ox Dark S	urface (F	6) is satisfied.	

WETLAND DETERMINATION DA	rmy Corps of Engineers ATA SHEET – Northcent 24; the proponent agency	ral and Northeas	t Region	Requirement Control Symbol EXEMPT (Authority: AR 335-15, paragraph 5-2a)			
Project/Site: Kalamazoo Runway 17/35 Ex	tension EA	City/County: Kalamaz	200	Sampling Date: 06/07/2019			
Applicant/Owner: Kalamazoo County			State:	MI Sampling Point: DP2 UPL			
Investigator(s): Brauna Hartzell & Tom War	d, Mead & Hunt, Inc.	Section, Tow	nship, Range:	Section 2, T3S, R11W			
Landform (hillside, terrace, etc.): Midslope							
Subregion (LRR or MLRA): LRR L, MLRA							
Soil Map Unit Name: Urban land-Kalamazo	· · ·	· / · · /					
Are climatic / hydrologic conditions on the sit				(If no, explain in Remarks.)			
Are Vegetation X, Soil X, or Hydrology significantly disturbed? Are "Normal Circumstances" present? Yes No							
Are Vegetation, Soil, or Hydr	ologynaturally problema	atic? (If needed	, explain any ar	nswers in Remarks.)			
SUMMARY OF FINDINGS – Attack	n site map showing sam	pling point locat	ions, transe	ects, important features, etc.			
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: (Explain alternative procedures I	Yes No X Yes No X Yes No X	Is the Sampled Ard within a Wetland? If yes, optional Wet	Ye	esNo_X			
A WETS analysis of the antecedent precipi investigation. Area mown regularly; 3' deep	tation indicates the hydrologic c						
HYDROLOGY							
Wetland Hydrology Indicators:			Secondary Ind	icators (minimum of two required)			
Primary Indicators (minimum of one is requ				oil Cracks (B6)			
Surface Water (A1)	Water-Stained Leaves (B	B9)		Patterns (B10)			
High Water Table (A2) Saturation (A3)	Aquatic Fauna (B13) Marl Deposits (B15)			n Lines (B16) on Water Table (C2)			
Water Marks (B1)	Hydrogen Sulfide Odor (C1)	-	surrows (C8)			
Sediment Deposits (B2)	Oxidized Rhizospheres of	· · ·		Visible on Aerial Imagery (C9)			
Drift Deposits (B3)	Presence of Reduced Iro	• • • •		Stressed Plants (D1)			
Algal Mat or Crust (B4)	Geomorph	nic Position (D2)					
Iron Deposits (B5)	Shallow A	quitard (D3)					
Inundation Visible on Aerial Imagery (B		ks)		graphic Relief (D4)			
Sparsely Vegetated Concave Surface (B8)		FAC-Neut	ral Test (D5)			
Field Observations:							
Surface Water Present? Yes	No X Depth (inches):						
Water Table Present? Yes	No X Depth (inches): No X Depth (inches):						
	No X Depth (inches):	Wetland	I Hydrology P	resent? Yes No X			
(includes capillary fringe) Describe Recorded Data (stream gauge, m	onitoring well aerial photos pre	vious inspections) if a	available:				
Remarks: Watland bydrology is paither procent per in	dicated						
Wetland hydrology is neither present nor in	uicaleu.						

Sampling Point: DP2 UPL

<u>Tree Stratum</u> (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.		000000		
2				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3				
4.				Total Number of Dominant Species Across All Strata: 2 (B)
5.				
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species 0 x 1 = 0
1				FACW species 0 x 2 = 0
2.				FAC species 0 x 3 = 0
3.				FACU species 100 x 4 = 400
4				UPL species x 5 =
5				Column Totals: 100 (A) 400 (B)
6				Prevalence Index = B/A =4.00
7				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				2 - Dominance Test is >50%
1. Poa pratensis	60	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Dactylis glomerata	20	Yes	FACU	4 - Morphological Adaptations ¹ (Provide supporting
3. Taraxacum officinale	10	No	FACU	data in Remarks or on a separate sheet)
4. Achillea millefolium	10	No	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	100	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				Hydrophytic
3				Vegetation
4				Present? Yes <u>No X</u>
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa Hydrophytic vegetation is not present. Area mown re	,			
······································	94.4.191			

Profile Desc	ription: (Describe	to the de	pth needed to doc	ument t	he indica	tor or c	onfirm th	e absence of indicat	tors.)	
Depth	Matrix		Redo	x Featur	es					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Te	xture	Remarl	ks
0-7	10YR 3/1	100					Loam	y/Clayey		
7-16	7.5YR 3/2	100					Loamy	y/Clayey		
	ncentration, D=Dep	letion, RN	I=Reduced Matrix, N	MS=Mas	ked Sand	l Grains.		² Location: PL=Pore	-	
Hydric Soil I			Daharaha Dah		aa (CO) (I	DD D		Indicators for Probl	-	
Histosol			Polyvalue Belo		ce (58) (I	_RR R,	•	2 cm Muck (A10)		
	ipedon (A2)		MLRA 149B Thin Dark Surf	,		MIDA	140B)	Coast Prairie Re		-
Black His	n Sulfide (A4)		High Chroma S				1490)	5 cm Mucky Pea Polyvalue Below		
	Layers (A5)		Loamy Mucky			-		Thin Dark Surfac		
	Below Dark Surface	- (A11)	Loamy Gleyed			Κ Κ, Ľ)		Iron-Manganese		-
	rk Surface (A12)	= (ATT)	Depleted Matri		12)		•	Piedmont Floodp		
	ucky Mineral (S1)		Redox Dark Si		6)		•			tside MLRA 145D
	leyed Matrix (S4)		Depleted Dark		-		•	Very Shallow Da		-
	edox (S5)		Redox Depres				•	Mesic Spodic (T/	•	,
	Matrix (S6)		Marl (F10) (LR		0)		•	Other (Explain in	, ,	-A, 143, 143D)
	face (S7)		Red Parent Ma		21) (MI F	2A 145)			i Keina Koj	
				atonai (i		(7 143)				
³ Indicators of	hydrophytic vegetat	tion and w	etland hydrology m	ust be pi	resent, ur	less dist	turbed or	problematic.		
	ayer (if observed):		, , , , , , , , , , , , , , , , , , , ,		,			1		
Type:										
Depth (in	iches):						Hydrid	c Soil Present?	Yes	No X
Remarks:	/						,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	are not present. Does	s not mee	t hvdric soils criteria	а.						
,			,							

U.S. Army Corps of Engineer WETLAND DETERMINATION DATA SHEET – Northcen See ERDC/EL TR-07-24; the proponent agency	tral and Northeast Re	gion Requirement Control Symbol EXEMPT (Authority: AR 335-15, paragraph 5-2a)
Project/Site: Kalamazoo Runway 17/35 Extension EA	City/County: Kalamazoo	Sampling Date: 08/19/2019
Applicant/Owner: Kalamazoo County		State: MI Sampling Point: DP3 WET
Investigator(s): Brauna Hartzell, Mead & Hunt, Inc.	Section. Township	, Range: Section 1, T3S, R11W
	relief (concave, convex, none	
Subregion (LRR or MLRA): LRR L, MLRA 98 Lat: 42.242298	Long: -85.54	
Soil Map Unit Name: Adrian muck, 0 to 1 percent slopes (Ad) (Hydric)		WI classification: N/A
Are climatic / hydrologic conditions on the site typical for this time of year?		No X (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignificantly distu		cumstances" present? Yes X No
Are Vegetation, Soil, or Hydrologynaturally problem	atic? (If needed, expla	ain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showing san	npling point locations	, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No Hydric Soil Present? Yes X No Wetland Hydrology Present? Yes X No	Is the Sampled Area within a Wetland? If yes, optional Wetland S	Yes X No Site ID: 3
HYDROLOGY	0	
Wetland Hydrology Indicators: Primary Indicators (minimum of one is required; check all that apply)		ndary Indicators (minimum of two required) aurface Soil Cracks (B6)
x Surface Water (A1) Water-Stained Leaves (prainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13)		loss Trim Lines (B16)
Saturation (A3) Marl Deposits (B15)		Pry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor	(C1) C	rayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres	on Living Roots (C3) x S	aturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Ir		tunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction i		Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	· · · · · · · · · · · · · · · · · · ·	hallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Rema Sparsely Vegetated Concave Surface (B8)	·	licrotopographic Relief (D4) AC-Neutral Test (D5)
Field Observations:	<u> </u>	AC-Neutral Test (D5)
Surface Water Present? Yes X No Depth (inches)	2	
Water Table Present? Yes No X Depth (inches)		
Saturation Present? Yes No X Depth (inches)		rology Present? Yes X No
(includes capillary fringe)		
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pr	evious inspections), if availat	ble:
Remarks: Wetland hydrology is present and indicated. Rainstorm occurred the night	•	
greater than 20 inches in depth and no saturation noted in the soil pit at de Earth).	epth. Saturation is visible on a	aerial imagery (C9) taken in 2017 (Google

Sampling Point: DP3 WET

	Absolute	Dominant	Indicator	
Tree Stratum (Plot size: 30')	% Cover	Species?	Status	Dominance Test worksheet:
1. Salix nigra	30	Yes	OBL	Number of Dominant Species
2				That Are OBL, FACW, or FAC: 2 (A)
3				Total Number of Dominant
4				Species Across All Strata: 2 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 100.0% (A/B)
7				Prevalence Index worksheet:
	30	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species <u>115</u> x 1 = <u>115</u>
1				FACW species <u>15</u> x 2 = <u>30</u>
2				FAC species x 3 =
3				FACU species 0 x 4 = 0
4				UPL species 0 x 5 = 0
5				Column Totals: 130 (A) 145 (B)
6				Prevalence Index = B/A = 1.12
7				Hydrophytic Vegetation Indicators:
		=Total Cover		X 1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				X 2 - Dominance Test is >50%
1. Eleocharis palustris	60	Yes	OBL	X 3 - Prevalence Index is $\leq 3.0^{1}$
2. Scirpus cyperinus	10	No	OBL	4 - Morphological Adaptations ¹ (Provide supporting
3. Cyperus strigosus	10	No	FACW	data in Remarks or on a separate sheet)
4. Juncus effusus	10	No	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Persicaria hydropiper	5	No	OBL	¹ Indicators of hydric soil and wetland hydrology must
6. Phalaris arundinacea	5	No	FACW	be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				Tree Weedy plants 2 in (7.6 cm) or more in
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	100	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				
3.				Hydrophytic Vegetation
4.				Vegetation Present? Yes X No
		=Total Cover	·	
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			1
	,	aria, Typha spr	o., Apocynum	cannabinum, Carex vulpinoidea, Carex scoparia, and

Hydrophytic vegetation is present. Also present are Lythrum salicaria, Typha spp., Apocynum cannabinum, Carex vulpinoidea, Carex scoparia, and Lycopus americanus.

Color (moist) % Color (moist) % Type ¹ Loc ² Texture Remarks 0-5 10YR 3/1 100	Depth	Matrix	to the de		ument ti x Featur		ator or c	onfirm the absence	of indicators.)
0-5 10YR 3/1 100	•		%				Loc ²	Texture	Remarks
5-8 10YR 3/1 90 7.5YR 4/6 10 C M Loamy/Clayey Prominent redox concentrations 8-20 7.5YR 4/2 75 7.5YR 4/6 20 C M Loamy/Clayey Prominent redox concentrations	0-5	10YR 3/1	100					Loamy/Clayey	
Image: space of the system	5-8	10YR 3/1		7.5YR 4/6	10	С	М		Prominent redox concentrations
¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=Matrix. Hydric Soli Indicators: Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histosol (A2) MLRA 149B) Coast Prainie Redox A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prainie Redox A16) (LRR K, L, R) X Depleted Below Dark Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Sufface (S9) (LRR K, L) X Depleted Below Dark Surface (A12) X Depleted Matrix (F3) Poleyed Matrix (F3) Sandy Mucky Mineral (S1) Redox Dark Surface (F7) Red Parent Material (F21) (MLRA 1448, 145, 1449 Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 1448, 145, 1449 3 ¹ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Deptet (inchees): Thin Dark Surface (S7) Hydric Soil Present?	8-20	7.5YR 4/2	75	7.5YR 4/6	20	С	М	Loamy/Clayey	Prominent redox concentrations
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) Indicators for Problematic Hydric Soils ³ : Black Histic (A3) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L, R) Z Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (MLRA 1491 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes_X No				7.5YR 5/1	5	D	М		Faint redox concentrations
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) Indicators for Problematic Hydric Soils ³ : Black Histic (A3) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L, R) Z Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (MLRA 1491 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes_X No									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) Indicators for Problematic Hydric Soils ³ : Black Histic (A3) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L, R) Z Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (MLRA 1491 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes_X No									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) Indicators for Problematic Hydric Soils ³ : Black Histic (A3) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L, R) Z Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (MLRA 1491 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes_X No						_	_		
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) Indicators for Problematic Hydric Soils ³ : Black Histic (A3) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L, R) Z Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (MLRA 1491 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes_X No									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) Indicators for Problematic Hydric Soils ³ : Black Histic (A3) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L, R) Z Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (MLRA 1491 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes_X No									
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) Indicators for Problematic Hydric Soils ³ : Black Histic (A3) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L, R) Z Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (MLRA 1491 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes_X No									
Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) X Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 149E) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 1445, 145, 149B) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Depth (inches): Uppth (inches): Yes X No Remarks: Hydric Soil Present? Yes X No			letion, RM	=Reduced Matrix, N	MS=Mas	ked Sano	d Grains		-
Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L, R) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) X Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) X Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149I Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 149I Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Jark Surface (S7) Red Parent Material (F21) (MLRA 1445) Mesic Spodic (TA6) (MLRA 144A, 145, 149B ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Mesic Spoil Present? Yes X No Remarks: Mesic Soil Present? Yes X	-								-
Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) x Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Thick Dark Surface (A12) x Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149B) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 142) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 1445) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Hydric Soil Present? Yes X No Type:		()				ce (S8) (LRR R,		
Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) x Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Thick Dark Surface (A12) x Depleted Matrix (F3) Piedmont Floodplain Soils (F12) (MLRA 1490 Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 142) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:									
Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) x Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) x Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 1491 Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 1491 Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 1445) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Black Hi	istic (A3)		Thin Dark Surf	face (S9)) (LRR R	, MLRA	149B) 5 cm N	/lucky Peat or Peat (S3) (LRR K, L, R)
x Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) x Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 1491 Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 14 Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) Stripped (if observed): Type:	Hydroge	en Sulfide (A4)		High Chroma	Sands (S	611) (LRI	R K, L)	Polyva	lue Below Surface (S8) (LRR K, L)
Thick Dark Surface (A12) x Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 14) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:	Stratified	d Layers (A5)		Loamy Mucky	Mineral	(F1) (LR	R K, L)	Thin D	ark Surface (S9) (LRR K, L)
Thick Dark Surface (A12) x Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149) Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 14) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Type:	x Depleted	d Below Dark Surfac	e (A11)	Loamy Gleyed	l Matrix (F2)		Iron-Ma	anganese Masses (F12) (LRR K, L, R)
Sandy Mucky Mineral (S1) Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 14 Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes X No Remarks: Kemarks:	Thick Da	ark Surface (A12)		x Depleted Matri	ix (F3)			Piedmo	ont Floodplain Soils (F19) (MLRA 149B)
Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:						6)			
Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) Other (Explain in Remarks) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Yes_X Type: Depth (inches): Hydric Soil Present? Yes_X No Remarks: Remarks: Hydric Soil Present? Yes_X No									
Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:									
Dark Surface (S7) Red Parent Material (F21) (MLRA 145) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Remarks:					-	0)			
³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed):					-	24) /MI 6	DA 145)		
Restrictive Layer (if observed): Type: Hydric Soil Present? Yes_X_No_ Depth (inches):									
Depth (inches): Hydric Soil Present? Yes X No Remarks: Image: Solid State St				etland hydrology m	ust be pr	esent, u	nless dis	turbed or problematic	<u>.</u>
Remarks:	Type:								
	Depth (i	nches):						Hydric Soil Pres	ent? Yes <u>X</u> No
Hydric soils are present. Hydric soils indicators Depleted Below Dark Surface (A11) and Depleted Matrix (E3) are satisfied	Remarks:								
Tryane conc are precent. Tryane concernation Depreted Benetic Depreted Matrix (Fe) are callened.	Hydric soils	are present. Hydric s	oils indica	tors Depleted Belov	<i>w</i> Dark S	urface (A	A11) and	Depleted Matrix (F3)	are satisfied.

L WETLAND DETERMINATION See ERDC/EL T		T – Northcent	ral and Northea	st Region	Requirement Con EXEMI (Authority: A paragraph	PT R 335-15,
Project/Site: Kalamazoo Runway 1	7/35 Extension EA		City/County: Kalama	azoo	Sampling D	ate: 08/19/2019
Applicant/Owner: Kalamazoo Co	ounty			State:	MI Sampling	Point: DP4 UPL
Investigator(s): Brauna Hartzell, Mea	ad & Hunt, Inc.		Section, To	wnship, Range:	Section 1, T3S, R11V	/
Landform (hillside, terrace, etc.): T		Local re	elief (concave, conve			Slope %: 3%
Subregion (LRR or MLRA): LRR L,		42.242352		-85.546384		ım: WGS84
Soil Map Unit Name: Adrian muck,			Long.		ification: N/A	<u> </u>
Are climatic / hydrologic conditions or			Vaa			morke)
, ,	21		Yes		(If no, explain in Re	
Are Vegetation X, Soil ,					es" present? Yes	<u> </u>
Are Vegetation, Soil,					nswers in Remarks.)	
SUMMARY OF FINDINGS –	Attach site map	showing sam	pling point loca	tions, transe	ects, important fe	eatures, etc.
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: (Explain alternative proce	Yes Yes Yes	No X No X No X	Is the Sampled A within a Wetland If yes, optional We	? Y€	esNoX	
A WETS analysis of the antecedent investigation. Area is mown regularly	precipitation indicate	• • •	onditions on the site	were wetter thar	n normal range at the t	ime of
HYDROLOGY						
Wetland Hydrology Indicators:				Secondary Ind	<u>icators (minimum of tv</u>	vo required)
Primary Indicators (minimum of one					oil Cracks (B6)	
Surface Water (A1) High Water Table (A2)		Stained Leaves (E	39)		Patterns (B10) Lines (B16)	
Saturation (A3)		c Fauna (B13) eposits (B15)			n Water Table (C2)	
Water Marks (B1)		gen Sulfide Odor (0	C1)		urrows (C8)	
Sediment Deposits (B2)			n Living Roots (C3)		Visible on Aerial Imag	gery (C9)
Drift Deposits (B3)	Preser	nce of Reduced Iro	on (C4)	Stunted or	Stressed Plants (D1)	
Algal Mat or Crust (B4)	Recen	t Iron Reduction in	Tilled Soils (C6)	Geomorph	ic Position (D2)	
Iron Deposits (B5)		luck Surface (C7)			quitard (D3)	
Inundation Visible on Aerial Ima		(Explain in Remark	(s)		graphic Relief (D4)	
Sparsely Vegetated Concave Se	urface (B8)		1	FAC-Neut	ral Test (D5)	
Field Observations:						
Surface Water Present? Yes	No <u></u>	Depth (inches):				
Water Table Present? Yes Saturation Present? Yes	<u>No X</u> No X	• • •			vecent? Vec	No. Y
Saturation Present? Yes (includes capillary fringe)		Depth (inches):		d Hydrology P	resent? Yes	No
Describe Recorded Data (stream ga	uge monitoring well	aerial photos pre	vious inspections) if	available		
		aanan priotoo, pro				
Remarks:						
Wetland hydrology is neither presen	t nor indicated.					

Sampling Point: DP4 UPL

Trace Charles (Districts) 201	Absolute	Dominant	Indicator	Deminence Test worksheet
<u>Tree Stratum</u> (Plot size: <u>30'</u>)	% Cover	Species?	Status	Dominance Test worksheet:
1				Number of Dominant Species
2				That Are OBL, FACW, or FAC: 0 (A)
3				Total Number of Dominant
4				Species Across All Strata: 1 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species 0 x 1 = 0
1				FACW species $0 x 2 = 0$
0				FAC species 5 x 3 = 15
				FACU species 95 x 4 = 380
···				· <u> </u>
5				Column Totals: 100 (A) 395 (B)
6				Prevalence Index = B/A = 3.95
7				Hydrophytic Vegetation Indicators:
	·	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				2 - Dominance Test is >50%
1. Poa pratensis	85	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Elymus repens	10	No	FACU	4 - Morphological Adaptations ¹ (Provide supporting
3. Prunella vulgaris	5	No	FAC	data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
				Definitions of Vegetation Strata:
				Demittons of Vegetation Strata.
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	100	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				
3.				Hydrophytic Versettion
4.				Vegetation Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa				
Hydrophytic vegetation is not present. Approximately	,	, with ~4' in ele	evation. Signi	ficant topographic change of ~3' at boundary.
			5	

Profile Desc	cription: (Describe	to the de	pth needed to doc	ument t	he indica	tor or c	onfirm the	e absence of indica	ators.)	
Depth	Matrix		Redo	x Featu	res					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Tex	xture	Rema	rks
0-16	10YR 3/3	100					Loom	//Clayey		
	1011(3/3	100					Loaniy			
				_						
·					·					
					·					
					·					
	oncentration, D=Dep	letion RM	-Reduced Matrix	-M-2N	ked Sand	Grains	-	² Location: PL=Pore	Lining M-M	atrix
Hydric Soil				10-11183	skeu Gane	oranis.		Indicators for Prob		
Histosol			Polyvalue Belo	w Surfa				2 cm Muck (A10	-	
	. ,		MLRA 1498		ice (30) (i		-			
	pipedon (A2)			,			140B)	Coast Prairie Re		
	istic (A3)		Thin Dark Sur				149D)	5 cm Mucky Pea		
	en Sulfide (A4)		High Chroma	-		-	-	Polyvalue Belov		
	d Layers (A5)		Loamy Mucky			Κ Κ, L)	-	Thin Dark Surfa		
	d Below Dark Surface	e (A11)	Loamy Gleyed		(F2)		-	-		2) (LRR K, L, R)
	ark Surface (A12)		Depleted Matr				-			19) (MLRA 149B)
	lucky Mineral (S1)		Redox Dark S				-			utside MLRA 145
	Gleyed Matrix (S4)		Depleted Dark		. ,		-	Very Shallow Da	-	-
	Redox (S5)		Redox Depres		-		-	Mesic Spodic (T	A6) (MLRA 1	44A, 145, 149B)
	l Matrix (S6)		Marl (F10) (LR				-	Other (Explain i	n Remarks)	
Dark Su	rface (S7)		Red Parent Ma	aterial (F	21) (MLF	RA 145)				
³ Indicators o	f hydrophytic vegetat	tion and w	etland hydrology m	ust be p	resent, ur	nless dist	turbed or p	problematic.		
Restrictive	Layer (if observed):									
Type:										
Depth (ii	nches):						Hydric	Soil Present?	Yes	No X
Remarks:	are not present. Doe	s not moo	t hydric coile critoric							
Tryunc sons a	are not present. Does	S HOL MEE		a.						
1										

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R	Requirement Control Symbol EXEMPT (Authority: AR 335-15, paragraph 5-2a)		
Project/Site: Kalamazoo Runway 17/35 Extension EA City/County: Kalamazoo	Sampling Date: 08/19/2019		
Applicant/Owner: Kalamazoo County State:			
Investigator(s): Brauna Hartzell, Mead & Hunt, Inc. Section, Township, Range:			
Landform (hillside, terrace, etc.): Basin Local relief (concave, convex, none): Conca			
Subregion (LRR or MLRA): LRR L, MLRA 98 Lat: 42.240669 Long: -85.548164	Datum: WGS84		
Soil Map Unit Name: Urban land-Kalamazoo complex, 0 to 6 percent slopes (UkB) (Non-hydric) NWI class	fication: PEM		
Are climatic / hydrologic conditions on the site typical for this time of year? Yes <u>No X</u>	(If no, explain in Remarks.)		
Are Vegetation, Soil, or Hydrologysignificantly disturbed? Are "Normal Circumstance"	es" present? Yes X No		
Are Vegetation, Soil, or Hydrologynaturally problematic? (If needed, explain any ar	swers in Remarks.)		
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transe	ects, important features, etc.		
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area Hydric Soil Present? Yes X No If yes, optional Wetland? Yes Wetland Hydrology Present? Yes X No If yes, optional Wetland Site ID: If yes, optional Wetland Site ID: Remarks: (Explain alternative procedures here or in a separate report.) A WETS analysis of the antecedent precipitation indicates the hydrologic conditions on the site were wetter than investigation.			
· · · · · · · · · · · · · · · · · · ·	cators (minimum of two required)		
	bil Cracks (B6)		
	Patterns (B10)		
	Moss Trim Lines (B16) Dry-Season Water Table (C2)		
	urrows (C8)		
	Visible on Aerial Imagery (C9)		
	Stressed Plants (D1)		
	ic Position (D2)		
	quitard (D3)		
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopog	graphic Relief (D4)		
Sparsely Vegetated Concave Surface (B8) x FAC-Neutr	al Test (D5)		
Field Observations:			
Surface Water Present? Yes No X Depth (inches): Image: Constraint of the state of	resent? Yes <u>X</u> No		
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available: Remarks: Wetland hydrology is present and indicated. Saturation (A3) within sampling plot and seen on aerial photos take	n in 2017 (Google Earth).		

Sampling Point: DP 5 WET

Stratum (Plot size: 30') % Control		Indicator Status	Dominance Test worksheet:			
Salix nigra 25	Yes	OBL	Number of Dominant Species			
Salix X fragilis 25	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 8 (A)			
			Total Number of Dominant			
			Species Across All Strata: 8 (B)			
			Percent of Dominant Species			
			That Are OBL, FACW, or FAC: 100.0% (A/			
		·	Prevalence Index worksheet:			
50	=Total Cover		Total % Cover of: Multiply by:			
ng/Shrub Stratum (Plot size: 15')			OBL species 80 x 1 = 80			
Salix nigra 40	Yes	OBL	FACW species 90 x 2 = 180			
Cornus alba 25	Yes	FACW	FAC species <u>55</u> x 3 = <u>165</u>			
			FACU species 0 x 4 = 0			
			UPL species 0 x 5 = 0			
			Column Totals: 225 (A) 425 (
		<u></u>	Prevalence Index = B/A = 1.89			
		<u></u>	Hydrophytic Vegetation Indicators:			
65	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation			
Stratum (Plot size: 5')			X 2 - Dominance Test is >50%			
Phalaris arundinacea 40	Yes	FACW	X_3 - Prevalence Index is ≤3.0 ¹			
Symphotrichum lanceolatum 25	Yes	FACW	4 - Morphological Adaptations ¹ (Provide support			
Geum aleppicum 20	Yes	FAC	data in Remarks or on a separate sheet)			
Carex stipata 5	No	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)			
Scirpus cyperinus 5	No	OBL	 Indicators of hydric soil and wetland hydrology mus 			
Carex vulpinoidea 5	No	OBL	be present, unless disturbed or problematic.			
			Definitions of Vegetation Strata:			
			Tree – Woody plants 3 in. (7.6 cm) or more in			
			diameter at breast height (DBH), regardless of heigh			
			Sapling/shrub – Woody plants less than 3 in. DBH			
			and greater than or equal to 3.28 ft (1 m) tall.			
			Herb – All herbaceous (non-woody) plants, regardle			
100	=Total Cover		of size, and woody plants less than 3.28 ft tall.			
dy Vine Stratum (Plot size: 30')			Woody vines – All woody vines greater than 3.28 ft			
Vitis riparia 10	Yes	FAC	height.			
			Hydrophytic Venetation			
		·	Vegetation Present? Yes X No			
	=Total Cover					
10	=Total Cover	- -				

SOIL

Depth	Matrix		Redo	x Featu	res			
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-4	10YR 3/2	100					Loamy/Clayey	Some gravel
4-16	10YR 3/2	95	7.5YR 4/6	5	<u>C</u>	M	Loamy/Clayey	Prominent redox concentrations
		·						
		·						
¹ Type: C=C	oncentration, D=Dep	letion, RM	=Reduced Matrix, N	//S=Mas	ked Sand	d Grains.	² Location:	PL=Pore Lining, M=Matrix.
Black H Hydroge Stratifie Deplete Thick D Sandy N Sandy C Sandy F Stripped Dark Su			Polyvalue Belo MLRA 149B Thin Dark Surf High Chroma S Loamy Mucky Loamy Gleyed Depleted Matri x Redox Dark Su Depleted Dark Redox Depres Marl (F10) (LR Red Parent Ma	i) Face (S9 Sands (S Mineral Matrix (ix (F3) urface (F Surface sions (F R K, L) aterial (F) (LRR R S11) (LRI (F1) (LRI (F2) =6) = (F7) =8) =21) (MLF	, MLRA 1 R K, L) R K, L) R K, L)	2 cm M Coast I 5 cm M Polyva Thin D Iron-Ma Piedmo Red Pa Very S Mesic S	for Problematic Hydric Soils ³ : Auck (A10) (LRR K, L, MLRA 149B) Prairie Redox (A16) (LRR K, L, R) Aucky Peat or Peat (S3) (LRR K, L, R) Aucky Peat or Peat (S3) (LRR K, L, R) auganese Masses (S8) (LRR K, L) anganese Masses (F12) (LRR K, L, R) ont Floodplain Soils (F19) (MLRA 149B) arent Material (F21) (outside MLRA 145, thallow Dark Surface (F22) Spodic (TA6) (MLRA 144A, 145, 149B) (Explain in Remarks)
Type:	Layer (if observed):						Hydric Soil Pres	ent? Yes <u>X</u> No
	are present. Hydric s	oils indica	tor Redox Dark Sur	face (F6	6) is satisi	ïed.		

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcent See ERDC/EL TR-07-24; the proponent agency	ral and Northeast Region (Authority: AR 335-15.
Project/Site: Kalamazoo Runway 17/35 Extension EA	City/County: Kalamazoo Sampling Date: 08/19/201
Applicant/Owner: Kalamazoo County	State: MI Sampling Point: DP6 UF
Investigator(s): Brauna Hartzell, Mead & Hunt, Inc.	Section, Township, Range: Section 1, T3S, R11W
Landform (hillside, terrace, etc.): Flat Local r	elief (concave, convex, none): <u>Convex</u> Slope %: < 1%
Subregion (LRR or MLRA): LRR L, MLRA 98 Lat: 42.240561	Long: -85.548194 Datum: WGS84
Soil Map Unit Name: Urban land-Kalamazoo complex, 0 to 6 percent slope	
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes No X (If no, explain in Remarks.)
Are Vegetation X , Soil , or Hydrology significantly disturb	
Are Vegetation, Soil, or Hydrologynaturally problema	
SUMMARY OF FINDINGS – Attach site map showing sam	
SUMMART OF FINDINGS - Allach sile map showing sam	pillig politi locations, transects, important reatures, etc.
Hydrophytic Vegetation Present? Yes No X	Is the Sampled Area
Hydric Soil Present? Yes X No	within a Wetland? Yes No X
Wetland Hydrology Present? Yes No X	If yes, optional Wetland Site ID:
Remarks: (Explain alternative procedures here or in a separate report.) A WETS analysis of the antecedent precipitation indicates the hydrologic control investigation. Area is mown regularly.	onditions on the site were wetter than normal range at the time of
HYDROLOGY	
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) Water-Stained Leaves (E	39) Drainage Patterns (B10)
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (
Sediment Deposits (B2) Oxidized Rhizospheres of	
Drift Deposits (B3) Presence of Reduced Iro	
Algal Mat or Crust (B4) Recent Iron Reduction in	
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark	
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No X Depth (inches):	
Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches):	
Saturation Present? Yes No X Depth (inches):	Wetland Hydrology Present? Yes No X
(includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vieus inspections) if available:
Describe recorded Data (sicerin gaugo, monitoring won, donar proces, pro	
Remarks:	
Wetland hydrology is neither present nor indicated. Rain storm occurred pro	evious night.

Sampling Point: DP6 UPL

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:			
1 2.				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)			
2 3 4				Total Number of Dominant Species Across All Strata: 2 (B)			
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)			
7.				Prevalence Index worksheet:			
		=Total Cover		Total % Cover of: Multiply by:			
Sapling/Shrub Stratum (Plot size: 15')				OBL species 0 x 1 = 0			
1,				FACW species 0 x 2 = 0			
				FAC species $0 \times 3 = 0$			
				FACU species 100 x 4 = 400			
				UPL species $0 \times 5 = 0$			
				Column Totals: 100 (A) 400 (B)			
				Prevalence Index = $B/A = 4.00$			
7		-Tatal Cause		Hydrophytic Vegetation Indicators:			
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation			
Herb Stratum (Plot size: 5')				2 - Dominance Test is >50%			
1. Poa pratensis	60	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹			
2. Elymus repens	20	Yes	FACU	4 - Morphological Adaptations ¹ (Provide supporting			
3. Plantago lanceolata	10	No	FACU	data in Remarks or on a separate sheet)			
4. Taraxacum officinale	5	No	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)			
5. <u>Trifolium repens</u> 6.	5	No	FACU	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.			
7.				Definitions of Vegetation Strata:			
8							
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.			
10 11				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.			
12.							
	100	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.			
Woody Vine Stratum (Plot size:30') 1.				Woody vines – All woody vines greater than 3.28 ft in height.			
2.							
3.				Hydrophytic			
				Vegetation Present? Yes <u>No X</u>			
4		=Total Cover					
Demarke: (Include phote numbers here er en e eene							
Remarks: (Include photo numbers here or on a sepa Hydrophytic vegetation is not present. Fairly flat area		rds shrub line	Approximate	ely 30' separates and ~1' is in elevation.			
	1		11				

		to the dep				ator or c	onfirm the absence	of indicators.)
Depth (in shas)	Matrix	0/		x Featur		1 2	Tautuma	Dementio
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-5	10YR 3/2	100					Loamy/Clayey	With small pebbles/gravel
5-10	10YR 3/2	95	7.5YR 4/6	5	С	Μ	Loamy/Clayey	Prominent redox concentrations
10-18	10YR 3/2	90	7.5YR 4/6	10	С	M	Loamy/Clayey	Prominent redox concentrations
		·						
		;						
¹ Tvpe: C=C	oncentration, D=Dep	etion. RM	=Reduced Matrix. N	IS=Mas	ked Sano	d Grains.	² Location:	PL=Pore Lining, M=Matrix.
Black Hi Hydroge Stratified Depleted Thick Da Sandy M Sandy G Sandy R Stripped Dark Su	(A1) pipedon (A2) sistic (A3) en Sulfide (A4) d Layers (A5) d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5) I Matrix (S6) rface (S7)		Polyvalue Belo MLRA 149B Thin Dark Surf High Chroma S Loamy Mucky Loamy Gleyed Depleted Matri x Redox Dark Su Depleted Dark Redox Depress Marl (F10) (LR Red Parent Ma) Sands (S Mineral Matrix (x (F3) urface (F Surface sions (Fi R K, L) uterial (F) (LRR R 511) (LRI (F1) (LRI F2) 6) (F7) 8) 21) (MLF	, MLRA ; R K, L) R K, L) R A 145)	2 cm M Coast 5 cm M Polyva Thin D Iron-M Piedmo Red Pa Very S Mesic	for Problematic Hydric Soils ³ : <i>A</i> uck (A10) (LRR K, L, MLRA 149B) Prairie Redox (A16) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat or Peat (S3) (LRR K, L, R) <i>A</i> ucky Peat (S3)
Depth (ii Remarks:	nches):						Hydric Soil Pres	ent? Yes <u>X</u> No
	are present. Hydric s	oils indica	tor Redox Dark surf	ace (F6) is satisf	ïed.		

U.S. Arm WETLAND DETERMINATION DATA See ERDC/EL TR-07-24;			t Region	Requirement Control Symbol EXEMPT (Authority: AR 335-15, paragraph 5-2a)			
Project/Site: Kalamazoo Runway 17/35 Extens	ion EA Ci	ty/County: Kalamaz	200	Sampling Date: 08/20/201			
Applicant/Owner: Kalamazoo County							
Investigator(s): Brauna Hartzell, Mead & Hunt,	Inc.	Section, Tow	nship, Range:	Section 12, T3S, R11W			
Landform (hillside, terrace, etc.): Basin	Local relie	ef (concave, convex	, none): Conca	ave Slope %: <1%			
Subregion (LRR or MLRA): LRR L, MLRA 98	Lat: 42.219578	Long:	-85.544716	Datum: WGS84			
Soil Map Unit Name: Kalamazoo loam, 2 to 6 p				fication: N/A			
Are climatic / hydrologic conditions on the site ty		· ·		(If no, explain in Remarks.)			
Are Vegetation, Soil _X, or Hydrolog	, ,			es" present? Yes X No			
				· · · · · · · · · · · · · · · · · · ·			
Are Vegetation, Soil, or Hydrolog				nswers in Remarks.)			
SUMMARY OF FINDINGS – Attach si	te map showing sampl	ing point locat	ions, transe	ects, important features, etc.			
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area Hydric Soil Present? Yes X No if yes, optional Wetland? Yes X No Wetland Hydrology Present? Yes X No If yes, optional Wetland? Yes X No Remarks: (Explain alternative procedures here or in a separate report.) A WETS analysis of the antecedent precipitation indicates the hydrologic conditions on the site were wetter than normal range at the time of investigation. Likely a constructed storm basin with culvert inflow from southeast.							
HYDROLOGY							
Wetland Hydrology Indicators:			Secondary Indi	cators (minimum of two required)			
Primary Indicators (minimum of one is required	; check all that apply)		Surface Sc	bil Cracks (B6)			
x Surface Water (A1)	Water-Stained Leaves (B9))	Drainage F	Patterns (B10)			
x High Water Table (A2)	Aquatic Fauna (B13)		Moss Trim	Lines (B16)			
x Saturation (A3)	Marl Deposits (B15)		Dry-Seaso	n Water Table (C2)			
Water Marks (B1)	Hydrogen Sulfide Odor (C1			urrows (C8)			
Sediment Deposits (B2)	Oxidized Rhizospheres on I	• • •		Visible on Aerial Imagery (C9)			
Drift Deposits (B3)	Presence of Reduced Iron	•		Stressed Plants (D1)			
Algal Mat or Crust (B4)	Recent Iron Reduction in Ti	illed Soils (C6)		ic Position (D2)			
Iron Deposits (B5)	Thin Muck Surface (C7) Other (Explain in Remarks)			quitard (D3)			
Inundation Visible on Aerial Imagery (B7)	Microtopog	graphic Relief (D4)					

Wetland hydrology is present and indicated. Saturation (A3) within sampling plot and seen on aerial photos taken in 2017 (Google Earth).

 No
 Depth (inches):
 2

 No
 Depth (inches):
 2

 No
 Depth (inches):
 0

Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:

Sparsely Vegetated Concave Surface (B8)

Yes X

Yes X

Yes X

Field Observations:

Surface Water Present?

(includes capillary fringe)

Water Table Present?

Saturation Present?

Remarks:

Yes X No

x FAC-Neutral Test (D5)

Wetland Hydrology Present?

Sampling Point: DP 7 WET

<u>Tree Stratum</u> (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:			
1. · · · · · · · · · · · · · · · · · · ·							
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 3 (A)			
3				Total Number of Dominant			
4				Species Across All Strata: <u>3</u> (B)			
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)			
7.				Prevalence Index worksheet:			
		=Total Cover		Total % Cover of: Multiply by:			
Sapling/Shrub Stratum (Plot size: 15')				$\begin{array}{c c} \hline \\ \hline $			
1. Salix interior	20	Yes	FACW	FACW species $35 \times 2 = 70$			
2		103	1400	FAC species $1 \times 3 = 3$			
2				FACU species $0 \times 4 = 0$			
				· · · · · · · · · · · · · · · · · · ·			
4				UPL species 0 $x5 = 0$			
5				Column Totals: 110 (A) 147 (B)			
6				Prevalence Index = B/A = 1.34			
7				Hydrophytic Vegetation Indicators:			
	20	=Total Cover		X 1 - Rapid Test for Hydrophytic Vegetation			
Herb Stratum (Plot size: 5')				X 2 - Dominance Test is >50%			
1. Typha angustifolia	42	Yes	OBL	X_3 - Prevalence Index is $≤3.0^1$			
2. Eleocharis palustris	30	Yes	OBL	4 - Morphological Adaptations ¹ (Provide supporting			
3. Salix interior	15	No	FACW	data in Remarks or on a separate sheet)			
4. Phalaris arundinacea	2	No	OBL	Problematic Hydrophytic Vegetation ¹ (Explain)			
5. Rhynchospora capitellata	1	No	FAC	¹ Indicators of hydric soil and wetland hydrology must			
6				be present, unless disturbed or problematic.			
7.				Definitions of Vegetation Strata:			
8				Tree – Woody plants 3 in. (7.6 cm) or more in			
9.				diameter at breast height (DBH), regardless of height.			
10				Sapling/shrub – Woody plants less than 3 in. DBH			
11				and greater than or equal to 3.28 ft (1 m) tall.			
12				Herb – All herbaceous (non-woody) plants, regardless			
	90	=Total Cover		of size, and woody plants less than 3.28 ft tall.			
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in			
1				height.			
2.							
3.				Hydrophytic			
4.				Vegetation Present? Yes X No			
		=Total Cover	·				
Remarks: (Include photo numbers here or on a sepa							
	,	tus tabernaemo	ontani, Scirpu	s cyperinus, Carex hystericina, and some algal growth.			

Depth	Matrix			x Featu			onfirm the absence o	
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-3	10YR 3/1	100					Loamy/Clayey	
3-8	10YR 4/2	97	10YR 5/6	3	С	М	Sandy	Prominent redox concentrations
8-18	10YR 5/2	95	10YR 5/6	2	С	М	Sandy	Prominent redox concentrations
			5YR 4/6	3	С	М		Prominent redox concentrations
		· ·						
	·	· ·						
	·							
¹ Type: C=C Hydric Soil	oncentration, D=Dep	letion, RM	=Reduced Matrix, N	∕IS=Mas	ked Sand	Grains.		PL=Pore Lining, M=Matrix. or Problematic Hydric Soils ³ :
Histosol Histic E Black H Hydroge Stratifie X Deplete Thick D Sandy N Sandy R Stripped Dark Su	l (A1) pipedon (A2) istic (A3) en Sulfide (A4) d Layers (A5) d Below Dark Surface ark Surface (A12) Mucky Mineral (S1) Gleyed Matrix (S4) Redox (S5) d Matrix (S6) urface (S7)	tion and w		B) Face (S9 Sands (S Mineral I Matrix (ix (F3) urface (F Surface sions (F R K, L) aterial (F) (LRR R S11) (LRF (F1) (LRF (F2) =6) ∈ (F7) 8) =21) (MLF	MLRA (R K, L) R K, L) R K, L)	2 cm Mu Coast Pi 5 cm Mu Polyvalu Thin Dar Iron-Mar Red Par Very Sha Mesic S	uck (A10) (LRR K, L, MLRA 149B) rairie Redox (A16) (LRR K, L, R) ucky Peat or Peat (S3) (LRR K, L, R) the Below Surface (S8) (LRR K, L) rk Surface (S9) (LRR K, L) rganese Masses (F12) (LRR K, L, R) the Floodplain Soils (F19) (MLRA 149B) ent Material (F21) (outside MLRA 145 allow Dark Surface (F22) podic (TA6) (MLRA 144A, 145, 149B) explain in Remarks)
Depth (i Remarks:	nches):						Hydric Soil Preser	nt? Yes <u>X</u> No
Hydric soils	are present. Hydric s	oils indica	tors Depleted Belov	w Dark S	Surface (A	.11), Sar	ndy Redox (S5), and Do	epleted Matrix (F3) are satisfied.

U.S. WETLAND DETERMINATION I See ERDC/EL TR-07	Requirement Control Symbol EXEMPT (Authority: AR 335-15, paragraph 5-2a)								
Project/Site: Kalamazoo Runway 17/35 E	Extension EA	City/County: Kalama	Z00	Sa	mpling Date: 08/20/20				
Applicant/Owner: Kalamazoo County	MI S	Sampling Point: DP8 U							
Investigator(s): Brauna Hartzell, Mead & H	/nship, Range:								
Landform (hillside, terrace, etc.): Midslop		elief (concave, conve	· · ·						
· · · · · · · · · · · · · · · · · · ·		-		×	Slope %: <u>30</u>				
Subregion (LRR or MLRA): LRR L, MLRA			-85.544649		Datum: WGS84				
Soil Map Unit Name: Kalamazoo loam, 2	to 6 percent slopes (KaB) (Non-h	ydric)	NWI classi	fication: N/	A				
Are climatic / hydrologic conditions on the site typical for this time of year? Yes No X (If no, explain in Remarks.)									
Are Vegetation, SoilX_, or Hy	drologysignificantly distur	bed? Are "Norm	al Circumstanc	es" present?	Yes X No				
Are Vegetation , Soil , or Hy	drology naturally problema	tic? (If needed	, explain any an	swers in Rer	marks.)				
SUMMARY OF FINDINGS – Attac			ions, transe	cts, impo	rtant features, etc				
Hydrophytic Vegetation Present? Hydric Soil Present? Wetland Hydrology Present? Remarks: (Explain alternative procedures	Yes No X Yes X No X Yes No X X	Is the Sampled Ar within a Wetland? If yes, optional Wet	ea Ye	s N					
HYDROLOGY									
Wetland Hydrology Indicators:			Secondary Indi	cators (minin	num of two required)				
Primary Indicators (minimum of one is rec	quired; check all that apply)		Surface Sc	oil Cracks (B6	6)				
Surface Water (A1)	Water-Stained Leaves (B	39)		atterns (B10)				
High Water Table (A2)	Aquatic Fauna (B13)			Lines (B16)					
Saturation (A3)	Marl Deposits (B15)	• • •		on Water Table (C2)					
Water Marks (B1)	Hydrogen Sulfide Odor (Oxidized Rhizospheres o	,		urrows (C8)					
Sediment Deposits (B2) Drift Deposits (B3)		Stressed Pla	erial Imagery (C9)						
Algal Mat or Crust (B4)		ic Position (E	()						
Iron Deposits (B5)		Aquitard (D3)							
Inundation Visible on Aerial Imagery ((B7) Thin Muck Surface (C7) (B7) Other (Explain in Remark	(s)		raphic Relief	(D4)				
Sparsely Vegetated Concave Surface		,		al Test (D5)	()				
Field Observations:									
Surface Water Present? Yes	No X Depth (inches):								
Water Table Present? Yes	No X Depth (inches):								
Saturation Present? Yes	No X Depth (inches):		d Hydrology Pr	esent?	Yes <u>No X</u>				
(includes capillary fringe)									
Describe Recorded Data (stream gauge,	monitoring well, aerial photos, pre	vious inspections), if	available:						
Remarks: Wetland hydrology is neither present nor i approximately 20' separates the two point		tely 5' higher in elevat	ion than paired	wetland poin	t (DP7) and				

Sampling Point: DP8 UPL

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. 2.				Number of Dominant Species That Are OBL, FACW, or FAC:0 (A)
3 4				Total Number of Dominant Species Across All Strata: <u>5</u> (B)
5				Percent of Dominant Species That Are OBL, FACW, or FAC:0.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species 0 x 1 = 0
1				FACW species 0 x 2 = 0
2.				FAC species 0 x 3 = 0
3.				FACU species 70 x 4 = 280
4.				UPL species 30 x 5 = 150
5.				Column Totals: 100 (A) 430 (B)
6.				Prevalence Index = $B/A = 4.30$
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				2 - Dominance Test is >50%
1. Poa pratensis	30	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Centaurea maculosa	20	Yes	UPL	4 - Morphological Adaptations ¹ (Provide supporting
3. Achillea millefolium	10	Yes	FACU	data in Remarks or on a separate sheet)
4. Elymus repens	10	Yes	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Medicago lupulina	10	Yes	FACU	
6. Solidago canadensis	5	No	FACU	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7. Bromus inermis	5	No	UPL	Definitions of Vegetation Strata:
8. Daucus carota	5	No	UPL	
9. Plantago lanceolata	5	No	FACU	Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10.				
11.				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12	100	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size:30') 1.				Woody vines – All woody vines greater than 3.28 ft in height.
2				
3				Hydrophytic Vegetation
4.				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa Hydrophytic vegetation is not present.	arate sheet.)			

Profile Desc	ription: (Describe	to the dep				ator or c	onfirm the absence	of indicators.)
Depth	Matrix			x Featu		. 2		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-3	10YR 3/1	100					Loamy/Clayey	
3-6	10YR 3/2	95	10YR 4/6	5	С	М	Sandy	Prominent redox concentrations
6-11	10YR 3/2	95	5YR 4/6	5	С	Μ	Sandy	Prominent redox concentrations
11-18	10YR 5/4	100					Sandy	
		·						
					·			
					·			
					·			
·								
					. <u> </u>			
17	D		De due e d Matria I				21	
Hydric Soil I	oncentration, D=Dep	letion, RM	=Reduced Matrix, N	/IS=Mas	sked Sand	d Grains.		PL=Pore Lining, M=Matrix. for Problematic Hydric Soils ³ :
Histosol			Polyvalue Belc	w Surfa	ice (S8) (LRR R,		uck (A10) (LRR K, L, MLRA 149B)
	pipedon (A2)				. , ,			Prairie Redox (A16) (LRR K, L, R)
	Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA					, MLRA		ucky Peat or Peat (S3) (LRR K, L, R)
Hydroge	n Sulfide (A4)		High Chroma S	Sands (S	S11) (LRI	R K, L)	Polyval	ue Below Surface (S8) (LRR K, L)
	Layers (A5)		Loamy Mucky			-		ark Surface (S9) (LRR K, L)
Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2)					Iron-Manganese Masses (F12) (LRR K, L, R)			
Thick Dark Surface (A12) Depleted Matrix (F3)						Piedmont Floodplain Soils (F19) (MLRA 149B)		
Sandy Mucky Mineral (S1) Redox Dark Surface (F6)					Red Parent Material (F21) (outside MLRA 145)			
Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7)					Very Shallow Dark Surface (F22)			
								Spodic (TA6) (MLRA 144A, 145, 149B)
x Sandy Redox (S5) Redox Depressions (F8)								
Stripped Matrix (S6)Marl (F10) (LRR K, L) Dark Surface (S7) Red Parent Material (F21) (MLRA 145)				RA 145)	Other (Explain in Remarks)			
—	. ,							
	f hydrophytic vegetat _ayer (if observed):		etland hydrology mu	ust be p	resent, u	nless dis	turbed or problematic.	
Type:	Layer (ii Observeu).							
Depth (in	nches):						Hydric Soil Prese	ent? Yes <u>X</u> No
Remarks:							4	
Hydric soils a	are present. Hydric s	oils indica	tor Sandy Redox (S	5) is sa	tisfied.			

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcent See ERDC/EL TR-07-24; the proponent agency	ral and Northeast Region (Authority: AR 335-)	
Project/Site: Kalamazoo Runway 17/35 Extension EA	City/County: Kalamazoo Sampling Date: 0	8/20/2019
Applicant/Owner: Kalamazoo County	State: MI Sampling Point:	
Investigator(s): Brauna Hartzell, Mead & Hunt, Inc.	Section, Township, Range: Section 12, T3S, R11W	
		%: <1%
Subregion (LRR or MLRA): LRR L, MLRA 98 Lat: 42.222163	Long: -85.544724 Datum: W	
Soil Map Unit Name: Adrian muck, 0 to 1 percent slopes (Ad) (Hydric)	NWI classification: PEM	
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes No X (If no, explain in Remarks.))
Are Vegetation, Soil, or Hydrologysignificantly disturb		
Are Vegetation, Soil, or Hydrologynaturally problema		
SUMMARY OF FINDINGS – Attach site map showing sam		e atc
SUMMART OF FINDINGS - Allach sile map showing sam	ping point locations, transects, important reature	S, ELC.
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area	
Hydric Soil Present? Yes X No	within a Wetland? Yes X No	
Wetland Hydrology Present? Yes X No	If yes, optional Wetland Site ID: 5	
Remarks: (Explain alternative procedures here or in a separate report.) A WETS analysis of the antecedent precipitation indicates the hydrologic c investigation.	onditions on the site were wetter than normal range at the time of	
HYDROLOGY		
Wetland Hydrology Indicators:	Secondary Indicators (minimum of two requi	<u>ired)</u>
Primary Indicators (minimum of one is required; check all that apply) Surface Water (A1) Water-Stained Leaves (E	Surface Soil Cracks (B6) 39) Drainage Patterns (B10)	
High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)	
Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)	
Water Marks (B1) Hydrogen Sulfide Odor (
Sediment Deposits (B2) Oxidized Rhizospheres of	on Living Roots (C3) Saturation Visible on Aerial Imagery (C9))
Drift Deposits (B3) Presence of Reduced Irc	on (C4) x Stunted or Stressed Plants (D1)	
Algal Mat or Crust (B4) Recent Iron Reduction in	· · · · · · · · · · · · · · · · · · ·	
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)	
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remark		
Sparsely Vegetated Concave Surface (B8)	FAC-Neutral Test (D5)	
Field Observations:		
Surface Water Present? Yes No X Depth (inches):		
Water Table Present? Yes No X Depth (inches): Saturation Present? Yes No X Depth (inches):		
Saturation Present? Yes No X Depth (inches): (includes capillary fringe)	Wetland Hydrology Present? Yes X N	No
Describe Recorded Data (stream gauge, monitoring well, aerial photos, pre	vious inspections), if available:	
Remarks: Wetland hydrology is indicated; likely remnant of former wooded wetland. E	Dead standing cherry trees within basin. Data point taken in shallov	v basin.

Sampling Point: DP9 WET

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. 2.		·		Number of Dominant Species That Are OBL, FACW, or FAC:(A)
3. 4.				Total Number of Dominant Species Across All Strata: 1 (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: <u>100.0%</u> (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size:15')				OBL species 0 x 1 = 0
1				FACW species 0 x 2 = 0
2.				FAC species 85 x 3 = 255
3.				FACU species 15 x 4 = 60
4.				UPL species 0 x 5 = 0
5.				Column Totals: 100 (A) 315 (B)
6.				Prevalence Index = B/A = 3.15
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				X 2 - Dominance Test is >50%
1. Persicaria maculosa	80	Yes	FAC	3 - Prevalence Index is ≤3.0 ¹
2. Phytolacca americana	45		FACU	4 - Morphological Adaptations ¹ (Provide supporting
3. Frangula alnus	5	No	FAC	data in Remarks or on a separate sheet)
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5 6.		·		¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
•		·		_
9.		·		Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10		·		Sapling/shrub – Woody plants less than 3 in. DBH
11		. <u> </u>		and greater than or equal to 3.28 ft (1 m) tall.
12	100	=Total Cover		Herb – All herbaceous (non-woody) plants, regardless of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in
1		. <u> </u>		height.
2				Hydrophytic
3				Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separ	,	<i></i> .		
Hydrophytic vegetation is present. Dead standing che	rry trees (P	runus serotina)		

Profile Desc	ription: (Describe	to the de	pth needed to doc	ument t	he indica	ator or c	onfirm the absence of indi	cators.)	
Depth	Matrix		Redo	x Featur	res				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks	
0-4	N 2.5/	100					Loamy/Clayey		
4-20	N 2.5/	95	2.5YR 3/4	5	С	M	Loamy/Clayey Pr	rominent redox concentrations	
·									
¹ Type: C=Co	ncentration, D=Dep	letion, RM	I=Reduced Matrix, N	//S=Mas	ked Sand	d Grains.	² Location: PL=Po	re Lining, M=Matrix.	
Hydric Soil I	ndicators:						Indicators for Pro	oblematic Hydric Soils ³ :	
Histosol	(A1)		Polyvalue Belo	ow Surfa	ce (S8) (I	LRR R,	2 cm Muck (A	10) (LRR K, L, MLRA 149B)	
Histic Ep	ipedon (A2)		MLRA 149B	5)			Coast Prairie	Redox (A16) (LRR K, L, R)	
Black His	stic (A3)		Thin Dark Surf	ace (S9) (LRR R	, MLRA [·]	149B)5 cm Mucky P	Peat or Peat (S3) (LRR K, L, R)	
Hydroger	n Sulfide (A4)		High Chroma	Sands (S	611) (LRF	R K, L)	Polyvalue Bel	ow Surface (S8) (LRR K, L)	
Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Darl							Thin Dark Sur	face (S9) (LRR K, L)	
Depleted	Below Dark Surface	e (A11)	Loamy Gleyed	Matrix ((F2)		Iron-Mangane	se Masses (F12) (LRR K, L, R)	
Thick Dark Surface (A12) Depleted Matrix (F3)							Piedmont Floodplain Soils (F19) (MLRA 149B)		
Sandy Mucky Mineral (S1) x Redox Dark Surface (F6)						Red Parent Material (F21) (outside MLRA 145)			
Sandy G	leyed Matrix (S4)		Depleted Dark	Surface	e (F7)		Very Shallow	Dark Surface (F22)	
Sandy Redox (S5) x Redox Depressions (F8)							Mesic Spodic (TA6) (MLRA 144A, 145, 149B)		
Stripped	Stripped Matrix (S6) Marl (F10) (LRR K, L)					Other (Explain in Remarks)			
Dark Sur	face (S7)		Red Parent Ma	aterial (F	21) (MLF	RA 145)	—		
³ Indicators of	hydrophytic vegetat	ion and w	etland hydrology m	ust be pi	resent, ur	nless dist	turbed or problematic.		
Restrictive L	ayer (if observed):								
Туре:									
Depth (in	ches):						Hydric Soil Present?	Yes <u>X</u> No	
Remarks:									
	ire present. Hydric s ken in a shallow clos			rface (F	6) and Re	edox Dep	pressions (F8) are satisfied.	Soils are very dry and crumbly.	

U.S. Ar WETLAND DETERMINATION DA See ERDC/EL TR-07-24		ral and Northeast Regi	(Authonity: AR 335-15,
			paragraph 5-2a)
Project/Site: Kalamazoo Runway 17/35 Exte	ension EA	City/County: Kalamazoo	Sampling Date: 08/20/2019
Applicant/Owner: Kalamazoo County			State: MI Sampling Point: DP10 UPL
Investigator(s): Brauna Hartzell, Mead & Hun	t, Inc.	Section, Township, R	ange: Section 12, T3S, R11W
Landform (hillside, terrace, etc.): Terrace	Local	relief (concave, convex, none):	None Slope %: <1%
Subregion (LRR or MLRA): LRR L, MLRA 98		Long: -85.544	
Soil Map Unit Name: Adrian muck, 0 to 1 pe			I classification: PEM
Are climatic / hydrologic conditions on the site	typical for this time of year?	Yes No	X (If no, explain in Remarks.)
Are Vegetation , Soil , or Hydro			nstances" present? Yes X No
Are Vegetation, Soil, or Hydro			any answers in Remarks.)
SUMMARY OF FINDINGS – Attach	site map showing sam	pling point locations, t	ransects, important features, etc.
Hydrophytic Vegetation Present?	Yes No X	Is the Sampled Area	
Hydric Soil Present?	Yes X No	within a Wetland?	Yes NoX
Wetland Hydrology Present?	Yes No X	If yes, optional Wetland Site	
Remarks: (Explain alternative procedures he A WETS analysis of the antecedent precipita investigation. Water sources cut off by railroa	tion indicates the hydrologic of		er than normal range at the time of
HYDROLOGY			
Wetland Hydrology Indicators:	ad: aback all that apply)		ary Indicators (minimum of two required)
Primary Indicators (minimum of one is require Surface Water (A1)	Water-Stained Leaves (ace Soil Cracks (B6) nage Patterns (B10)
High Water Table (A2)	Aquatic Fauna (B13)	/	s Trim Lines (B16)
Saturation (A3)	Marl Deposits (B15)		Season Water Table (C2)
Water Marks (B1)	Hydrogen Sulfide Odor (/fish Burrows (C8)
Sediment Deposits (B2)	Oxidized Rhizospheres		uration Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced In		nted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in	· · ·	morphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	Sha	llow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remar	ks) Mici	otopographic Relief (D4)
Sparsely Vegetated Concave Surface (B	8)	FAC	C-Neutral Test (D5)
Field Observations:			
Surface Water Present? Yes Water Table Present? Yes Saturation Present? Yes (includes capillary fringe)	NoXDepth (inches):NoXDepth (inches):NoXDepth (inches):		ogy Present? Yes <u>No X</u>
Describe Recorded Data (stream gauge, mol	nitoring well, aerial photos, pre	evious inspections), if available	:
Remarks: Wetland hydrology is neither present nor indi	cated. Datapoint approximate	ly 2' higher in elevation than pa	ired wetland point (DP9).

VEGETATION – Use scientific names of plants.

Sampling Point: DP10 UPL

				1 5
<u>Tree Stratum</u> (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1. Prunus avium	50	Yes	FACU	
2. Prunus serotina	10	No	FACU	Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3.				Total Number of Deminent
4.				Total Number of DominantSpecies Across All Strata:2(B)
5.		·		
6.		·		Percent of Dominant Species That Are OBL, FACW, or FAC: 0.0% (A/B)
7.				Prevalence Index worksheet:
	60	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species 0 x 1 = 0
1				FACW species 2 x 2 = 4
2.				FAC species 8 x 3 = 24
3.				FACU species 140 x 4 = 560
4.				UPL species $0 \times 5 = 0$
5.		·		Column Totals: 150 (A) 588 (B)
6.		·		Prevalence Index = B/A = 3.92
7.		·		Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')		•		2 - Dominance Test is >50%
1. Phytolacca americana	75	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Persicaria macuolsa	5	No	FAC	4 - Morphological Adaptations ¹ (Provide supporting
3. Setaria faberi	5	No	FACU	data in Remarks or on a separate sheet)
4. Frangula alnus	3	No	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Pilea pumila	2	No	FACW	
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9		·		diameter at breast height (DBH), regardless of height.
10		·		Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	90	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30')				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				I huden a hudin
3				Hydrophytic Vegetation
4				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa Hydrophytic vegetation is not present. Some bare soi	,			

Depth	cription: (Describe Matrix		-	x Featu						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	S
0-6	N 2.5/	100					Loamy/Clayey		humus	
6-18	N 2.5/	95	2.5YR 3/4	5	С	PL/M	Loamy/Clayey	Prom	inent redox co	ncentrations
	<u> </u>				·					
					·					
					·					
	Concentration, D=Dep	letion, RN	1=Reduced Matrix, N	MS=Mas	ked San	d Grains.			ining, M=Matri matic Hydric	
Hydric Soil			Polyvalue Belo	Surfe	xxxx (SQ) ((LRR K, L, MI	
Histosol					ice (30) (LKK K,			-	-
	pipedon (A2)		MLRA 149B	'					lox (A16) (LRF	
	listic (A3)		Thin Dark Surf					-	or Peat (S3) (
	en Sulfide (A4)		High Chroma			-			Surface (S8) (I	
Stratifie	d Layers (A5)		Loamy Mucky	Mineral	(F1) (LR	R K, L)	Thin E	ark Surface	e (S9) (LRR K ,	, L)
Deplete	d Below Dark Surface	e (A11)	Loamy Gleyed	Matrix	(F2)		Iron-N	langanese I	Masses (F12)	(LRR K, L, R)
Thick D	ark Surface (A12)		Depleted Matri	ix (F3)			Piedm	ont Floodpl	ain Soils (F19) (MLRA 149B)
Sandy M	Mucky Mineral (S1)		x Redox Dark Si	urface (I	F6)		Red P	arent Mater	rial (F21) (outs	side MLRA 145
Sandy (Gleyed Matrix (S4)		Depleted Dark	Surface	e (F7)		Very S	Shallow Dar	k Surface (F22	2)
	Redox (S5)		Redox Depres						-	, A, 145, 149B)
	d Matrix (S6)		Marl (F10) (LR					(Explain in		,,
	urface (S7)		Red Parent Ma			RA 145)		(Explain in	iterilaitts)	
³ Indicators o	of hydrophytic vegeta	tion and w	etland hydrology m	uet ha n	resent u	nless dist	turbed or problemati	~		
	Layer (if observed):		elland nydrology m	usi be p	resent, u					
Type:										
Depth (i	inches):						Hydric Soil Pres	ent?	Yes X	No
Remarks:										
Hydric soils	are present. Hydric s	oils indica	ator Redox Dark sur	face (F6	is satisf	fied. Very	dry and crumbly so	I. Redox fea	atures in pore	linings not on
living roots.	High organic conten	t soil.								

THIS PAGE INTENTIONALLY LEFT BLANK

U.S. Army Corps of Engineers	Requirement Control Symbol EXEMPT							
WETLAND DETERMINATION DATA SHEET – Northcentral and Northeast Region See ERDC/EL TR-07-24; the proponent agency is CECW-CO-R	(Authority: AR 335-15,							
See ENDO/EE THEO/-24, the proponent agency is OEOW-00-IN	paragraph 5-2a)							
Project/Site: Kalamazoo Runway 17/35 Extension EA City/County: Kalamazoo	Sampling Date: 08/21/2019							
Applicant/Owner: Kalamazoo County State:	MI Sampling Point: DP 11 WET							
Investigator(s): Brauna Hartzell, Mead & Hunt, Inc. Section, Township, Range:	Section 1, T3S, R11W							
Landform (hillside, terrace, etc.): Shallow basin/swale Local relief (concave, convex, none): Conca	ave Slope %: <1%							
Subregion (LRR or MLRA): LRR L, MLRA 98 Lat: 42.239190 Long: -85.548707	Datum: WGS84							
	ification: N/A							
Are climatic / hydrologic conditions on the site typical for this time of year? Yes No X	(If no, explain in Remarks.)							
	es" present? Yes X No							
Are Vegetation, Soil, or Hydrologynaturally problematic? (If needed, explain any answers in Remarks.)								
SUMMARY OF FINDINGS – Attach site map showing sampling point locations, transe	ects, important features, etc.							
Hydrophytic Vegetation Present? Yes X No Is the Sampled Area								
Hydric Soil Present? Yes X No within a Wetland? Ye Wetland Hydrology Present? Yes X No If yes, optional Wetland Site ID:	es <u>X</u> No							
	<u> </u>							
Remarks: (Explain alternative procedures here or in a separate report.) A WETS analysis of the antecedent precipitation indicates the hydrologic conditions on the site were wetter than	n normal range at the time of							
investigation. Area is mown regularly.								
L HYDROLOGY								
	icators (minimum of two required)							
	bil Cracks (B6)							
	Patterns (B10)							
	Lines (B16)							
Saturation (A3) Marl Deposits (B15) Dry-Seaso	n Water Table (C2)							
Water Marks (B1) Hydrogen Sulfide Odor (C1) Crayfish B	urrows (C8)							
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots (C3) Saturation	Visible on Aerial Imagery (C9)							
	Stressed Plants (D1)							
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C6) x Geomorph	ic Position (D2)							
Iron Deposits (B5) Thin Muck Surface (C7) Shallow A	quitard (D3)							
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks) Microtopog	graphic Relief (D4)							
Sparsely Vegetated Concave Surface (B8) x FAC-Neutr								
Field Observations:								
Surface Water Present? Yes No X Depth (inches):								
Water Table Present? Yes No X Depth (inches):								
Saturation Present? Yes No X Depth (inches): Wetland Hydrology Pr	resent? Yes X No							
(includes capillary fringe)	· ·							
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspections), if available:								
Remarks:								
Wetland hydrology is indicated. At previous field visit in June, standing water was observed in this swale.								

VEGETATION – Use scientific names of plants.

Sampling Point: DP 11 WET

Tree Stratum (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.	70 00101			
2.				Number of Dominant Species That Are OBL, FACW, or FAC:3(A)
3				Total Number of Dominant Species Across All Strata: 3 (B)
5 6				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species 0 x 1 = 0
1.				FACW species 63 x 2 = 126
2.				FAC species 35 x 3 = 105
3.				FACU species 0 x 4 = 0
4.				UPL species 2 x 5 = 10
5				Column Totals: 100 (A) 241 (B)
6.				Prevalence Index = B/A = 2.41
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5')				X 2 - Dominance Test is >50%
1. Phalaris arundinacea	43	Yes	FACW	X 3 - Prevalence Index is $\leq 3.0^1$
2. Persicaria maculosa	20	Yes	FAC	4 - Morphological Adaptations ¹ (Provide supporting
3. Cyperus strigosus	20	Yes	FACW	data in Remarks or on a separate sheet)
4. Symphyotrichum lateriflorum	15	No	FAC	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Asclepias syriaca	2	No	UPL	
6				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	100	=Total Cover		of size, and woody plants less than 3.28 ft tall.
<u>Woody Vine Stratum</u> (Plot size: <u>30'</u>) 1.				Woody vines – All woody vines greater than 3.28 ft in
2			·	height.
				Hydrophytic
3				Vegetation Brocont2 Yes Y
4		-Tetal Origina		Present?
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	rate sheet.)			

Hydrophytic vegetation is present. Also present are Juncus effusus and Rumex crispus. Due to height of vegetation, difficult to identify all species. Datapoint is taken in shallow swale that drains a culvert further west.

Depth Matrix Redox Features (inches) Color (moist) % Color (moist) % Type Los ² 0-5 10YR 3/2 100	Color (moist) % Color (moist) % Type1 Loc2 Texture Rem 0-5 10YR 3/2 100	
0-5 10YR 3/2 100 Loamty/Clayey 5-14 10YR 3/1 95 5YR 3/4 5 C M Loamty/Clayey Prominent redox concentrations 14-18 10YR 3/1 100 Loamty/Clayey Image: Concentration of the second se	0-5 10YR 3/2 100	arks
5-14 10YR 3/1 95 5YR 3/4 5 C M Loamy/Clayey Prominent redox concentrations 14-18 10YR 3/1 100	5-14 10YR 3/1 95 5YR 3/4 5 C M Loamy/Clayey Prominent redox 14-18 10YR 3/1 100	
14-18 10YR 3/1 100 Loamy/Clayey	14-18 10YR 3/1 100 Loamy/Clayey	x concentrations
Image: Stratified Layers (A3) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) Cacation: PL=Pore Lining, M=Matrix. Histic Spiedon (A2) MuRA 149B) Indicators for Problematic Hydric Soils ³ : Histic Spiedon (A2) MuRA 149B) Cocastion: PL=Pore Lining, M=Matrix. Histic Spiedon (A2) MuRA 149B) Cocastion: Plaifie Redox (A10) (LRR K, L, MLRA 149B) Stratified Layers (A5) Thin Dark Surface (S9) (LRR R, MLRA 149B) S on Muck (A10) (LRR K, L, R) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Surface (A11) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L, R) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Wersy Shallow Dark Surface (S9) (LRR K, L) Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Wersy Shallow Dark Surface (F2) Sandy Redox (S5) Red Parent Material (F21) (MLRA 145) Other (Explain in Remarks) Stripped Matrix (S6) Mari (F10) (LRR K, L) Other (Explain in Remarks) Trype:		
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (Outside MLRA 149B) Sandy Gleyed Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Stripped Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Other (Explain in Remarks) Other (Explain in Remarks) 'alndicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes _X_ No_ Restrictive Layer (if observed): Type: Yes _X_ No_ Type: Depth (inches): Hydric Soil Present? Yes _X_ No_	Image: Second	
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (Outside MLRA 149B) Sandy Gleyed Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Stripped Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Other (Explain in Remarks) Other (Explain in Remarks) 'alndicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes _X_ No_ Restrictive Layer (if observed): Type: Yes _X_ No_ Type: Depth (inches): Hydric Soil Present? Yes _X_ No_	Image:	
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (Outside MLRA 149B) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Jalndicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Polpt (inches): Hydric Soil Present? Yes _X_ No_	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=N	
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (Outside MLRA 149B) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Jalndicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Other (Explain in Remarks) Polpt (inches): Hydric Soil Present? Yes _X_ No_	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=N	
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149I Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 142) Stripped Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Other (Explain in Remarks) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes X No Mesic Soil Present? Yes X No Mo	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=N	
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149I Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 142) Stripped Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Other (Explain in Remarks) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes X No Mesic Soil Present? Yes X No Mo	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=N	
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149I Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 142) Stripped Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Other (Explain in Remarks) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes X No Mesic Soil Present? Yes X No Mo	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=N	
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149I Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 142) Stripped Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Other (Explain in Remarks) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes X No Mesic Soil Present? Yes X No Mo	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=N	
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (Outside MLRA 149B) Sandy Gleyed Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Stripped Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B) Other (Explain in Remarks) Other (Explain in Remarks) 'alndicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes _X_ No_ Restrictive Layer (if observed): Type: Yes _X_ No_ Type: Depth (inches): Hydric Soil Present? Yes _X_ No_	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=N	
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149I Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 142) Stripped Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Other (Explain in Remarks) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes X No Mesic Soil Present? Yes X No Mo	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=M	
Hydric Soil Indicators: Indicators for Problematic Hydric Soils ³ : Histosol (A1) Polyvalue Below Surface (S8) (LRR R, Histic Epipedon (A2) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Polyvalue Below Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Thin Dark Surface (S9) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149I Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 142) Stripped Matrix (S6) Marl (F10) (LRR K, L) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Other (Explain in Remarks) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes X No Mesic Soil Present? Yes X No Mo	¹ Type: C=Concentration, D=Depletion, RM=Reduced Matrix, MS=Masked Sand Grains. ² Location: PL=Pore Lining, M=N	
Histosol (A1) Polyvalue Below Surface (S8) (LRR R, MLRA 149B) 2 cm Muck (A10) (LRR K, L, MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (A11) Loamy Gleyed Matrix (F2) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149I Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 149 Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 1444, 145, 149B Stripped Matrix (S6) Mari (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes X No Restrictive Layer (if observed): Type:		∕latrix.
Histic Epipedon (A2) MLRA 149B) Coast Prairie Redox (A16) (LRR K, L, R) Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A12) Depleted Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 144A, 145, 149B Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 1445) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes X No Restrictive Layer (if observed): Type:	Hydric Soil Indicators: Indicators for Problematic Hydric Soil Indicators for Problematic Hydric	dric Soils ³ :
Black Histic (A3) Thin Dark Surface (S9) (LRR R, MLRA 149B) 5 cm Mucky Peat or Peat (S3) (LRR K, L, R) Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L, R) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 1449 Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 142) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes_X No		., MLRA 149B)
Hydrogen Sulfide (A4) High Chroma Sands (S11) (LRR K, L) Polyvalue Below Surface (S8) (LRR K, L) Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 149i Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 14) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) 3Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Yes X No Restrictive Layer (if observed): Type:		-
Stratified Layers (A5) Loamy Mucky Mineral (F1) (LRR K, L) Thin Dark Surface (S9) (LRR K, L) Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 1491 Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 14 Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Jaindicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes X No		
Depleted Below Dark Surface (A11) Loamy Gleyed Matrix (F2) Iron-Manganese Masses (F12) (LRR K, L, R) Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 1491 Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 14 Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:		
Thick Dark Surface (A12) Depleted Matrix (F3) Piedmont Floodplain Soils (F19) (MLRA 1491 Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 14 Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes X No		
Sandy Mucky Mineral (S1) x Redox Dark Surface (F6) Red Parent Material (F21) (outside MLRA 14 Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes X No		
Sandy Gleyed Matrix (S4) Depleted Dark Surface (F7) Very Shallow Dark Surface (F22) Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:		
Sandy Redox (S5) Redox Depressions (F8) Mesic Spodic (TA6) (MLRA 144A, 145, 149B Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks) Dark Surface (S7) Red Parent Material (F21) (MLRA 145) Other (Explain in Remarks) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type:		
Dark Surface (S7) Red Parent Material (F21) (MLRA 145) ³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present? Yes X		
³ Indicators of hydrophytic vegetation and wetland hydrology must be present, unless disturbed or problematic. Restrictive Layer (if observed): Type: Depth (inches): Hydric Soil Present?	Stripped Matrix (S6) Marl (F10) (LRR K, L) Other (Explain in Remarks)	
Restrictive Layer (if observed):	Dark Surface (S7) Red Parent Material (F21) (MLRA 145)	
Restrictive Layer (if observed):	2	
Type:		
Depth (inches): Hydric Soil Present? Yes X No		
		× No
Remarks:		
Hydric soils are present. Hydric soils indicator Redox Dark surface (F6) is satisfied.		

THIS PAGE INTENTIONALLY LEFT BLANK

U.S. Army Corps of Engineers WETLAND DETERMINATION DATA SHEET – Northcentral See ERDC/EL TR-07-24; the proponent agency is	-	Requirement Control Symbol EXEMPT (Authority: AR 335-15, paragraph 5-2a)					
Project/Site: Kalamazoo Runway 17/35 Extension EA Cit	ty/County: <u>Kalamazoo</u>	Sampling Date: 08/21/2019					
Applicant/Owner: Kalamazoo County	State:	MI Sampling Point: DP 12 UPL					
Investigator(s): Brauna Hartzell, Mead & Hunt, Inc.	Section, Township, Range:	Section 1, T3S, R11W					
Landform (hillside, terrace, etc.): Terrace Local relie	ef (concave, convex, none): Flat	Slope %: <1%					
Subregion (LRR or MLRA): LRR L, MLRA 98 Lat: 42.239167	Long: -85.548677	Datum: WGS84					
Soil Map Unit Name: Urban land-Kalamazoo complex, 0 to 6 percent slopes (UkB) (Non-hydric) NWI class	ification: N/A					
Are climatic / hydrologic conditions on the site typical for this time of year?	Yes No X	(If no, explain in Remarks.)					
Are Vegetation X , Soil , or Hydrology significantly disturbed	Are "Normal Circumstanc	es" present? Yes X No					
Are Vegetation , Soil , or Hydrology naturally problematic? (If needed, explain any answers in Remarks.)							
SUMMARY OF FINDINGS – Attach site map showing sampli		ects, important features, etc.					
Lludraphytic Verstation Present? Ves No. Y	la the Compled Area						
	Is the Sampled Area within a Wetland? Ye	es No X					
·	If yes, optional Wetland Site ID:	<u> </u>					
Remarks: (Explain alternative procedures here or in a separate report.) A WETS analysis of the antecedent precipitation indicates the hydrologic cond investigation. Area is mown regularly.	ditions on the site were wetter thar	n normal range at the time of					
HYDROLOGY							
Wetland Hydrology Indicators:	Secondary Ind	icators (minimum of two required)					
Primary Indicators (minimum of one is required; check all that apply)		oil Cracks (B6)					
Surface Water (A1) Water-Stained Leaves (B9)		Patterns (B10)					
High Water Table (A2) Saturation (A3) Aquatic Fauna (B13) Marl Deposits (B15)		Lines (B16)					
Saturation (A3) Marl Deposits (B15) Water Marks (B1) Hydrogen Sulfide Odor (C1)		on Water Table (C2) urrows (C8)					
Sediment Deposits (B2) Oxidized Rhizospheres on L		Visible on Aerial Imagery (C9)					
Drift Deposits (B3) Presence of Reduced Iron (Stressed Plants (D1)					
Algal Mat or Crust (B4) Recent Iron Reduction in Til		nic Position (D2)					
Iron Deposits (B5) Thin Muck Surface (C7)		quitard (D3)					
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)		graphic Relief (D4)					
Sparsely Vegetated Concave Surface (B8)		ral Test (D5)					
Field Observations:							
Surface Water Present? Yes No X Depth (inches):							
Water Table Present? Yes No X Depth (inches):							
Saturation Present? Yes No X Depth (inches):	Wetland Hydrology P	resent? Yes No X					
(includes capillary fringe)							
Describe Recorded Data (stream gauge, monitoring well, aerial photos, previo	ous inspections), if available:						
Remarks: Wetland hydrology is neither present nor indicated. Approximately 1' higher the	an paired wetland point.						

VEGETATION – Use scientific names of plants.

Sampling Point: DP 12 UPL

<u>Tree Stratum</u> (Plot size: 30')	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.	70 00101			
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 0 (A)
3. 4.				Total Number of Dominant Species Across All Strata: <u>2</u> (B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC:0.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15')				OBL species 0 x 1 = 0
1				FACW species 0 x 2 = 0
2.				FAC species 0 x 3 = 0
3.				FACU species 100 x 4 = 400
4.				UPL species 0 x 5 = 0
5.				Column Totals: 100 (A) 400 (B)
6.				Prevalence Index = $B/A = 4.00$
7.				Hydrophytic Vegetation Indicators:
		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
<u>Herb Stratum</u> (Plot size: 5')				2 - Dominance Test is >50%
1. Poa pratensis	50	Yes	FACU	3 - Prevalence Index is ≤3.0 ¹
2. Fragaria virginiana	25	Yes	FACU	4 - Morphological Adaptations ¹ (Provide supporting
3. Plantago lanceolata	10	No	FACU	data in Remarks or on a separate sheet)
4. Taraxacum officinale	5	No	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Trifolium pratense	5	No	FACU	
6. Trifolium repens	5	No	FACU	¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8.				Tree Weedy plants 2 in (7.6 cm) or more in
9.				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	100	=Total Cover		of size, and woody plants less than 3.28 ft tall.
<u>Woody Vine Stratum</u> (Plot size: <u>30'</u>) 1.				Woody vines – All woody vines greater than 3.28 ft in height.
2				
3				Hydrophytic Vegetation
4.				Present? Yes No X
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa Hydrophytic vegetation is not present. Approximately	,	es the points wi	th about 1' in	elevation change. Vegetation difficult to identify.

Depth	Matrix	to the de		iment t k Featu		itor or c	onfirm the absence o	of indicators.)
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-4	10YR 3/2	100					Loamy/Clayey	
4-10	10YR 3/2	95	7.5YR 4/6	5	С	м	Loamy/Clayey	Prominent redox concentrations
10-16	7.5YR 4/1	95	7.5YR 4/6			M		
	<u> </u>	90	7.51K 4/0	5	<u> </u>		Loamy/Clayey	Prominent redox concentrations
						_		
¹ Type: C=C	oncentration, D=Dep	letion, RM	=Reduced Matrix, M	1S=Mas	ked Sand	Grains.	² Location: F	PL=Pore Lining, M=Matrix.
Hydric Soil	Indicators:						Indicators f	for Problematic Hydric Soils ³ :
Histosol			Polyvalue Belo		ace (S8) (LRR R,		uck (A10) (LRR K, L, MLRA 149B)
	pipedon (A2)		MLRA 149B	,				Prairie Redox (A16) (LRR K, L, R)
	istic (A3)		Thin Dark Surfa					ucky Peat or Peat (S3) (LRR K, L, R)
	en Sulfide (A4)		High Chroma S			-		ue Below Surface (S8) (LRR K, L)
	d Layers (A5)		Loamy Mucky			R K, L)		ark Surface (S9) (LRR K, L)
	d Below Dark Surface	e (A11)	Loamy Gleyed		(F2)			nganese Masses (F12) (LRR K, L, R)
	ark Surface (A12)		x Depleted Matrix					ont Floodplain Soils (F19) (MLRA 149B)
Sandy M	/lucky Mineral (S1)		x Redox Dark Su	-	-		Red Par	rent Material (F21) (outside MLRA 145
	Gleyed Matrix (S4)		Depleted Dark					nallow Dark Surface (F22)
	Redox (S5)		Redox Depress					Spodic (TA6) (MLRA 144A, 145, 149B)
Stripped	l Matrix (S6)		Marl (F10) (LR				Other (E	Explain in Remarks)
	rface (S7)		Red Parent Ma					
	f hydrophytic vegetat Layer (if observed):		etland hydrology mu	ist be p	resent, ur	iless dist	turbed or problematic.	
Type:								
Depth (i	nches):						Hydric Soil Prese	ent? Yes <u>X</u> No
Remarks:								
Hydric soils	are present. Hydric s	oils indica	tors Depleted Below	/ Dark S	Surface (A	(11), Dep	pleted Matrix (F3), and	Redox Dark Surface (F6) are satisfied

THIS PAGE INTENTIONALLY LEFT BLANK

Appendix H. Field Photographs

Photo 1. General infield area. View to the southwest. (Aug 19, 2019).

Photo 3. Wetland 1A, Data points 1 and 2. View to the north. (June 07, 2019).

Photo 2. General infield area. View to the south. (Aug 19, 2019).

Photo 4. Wetland 1A, Data points 1 and 2. View to the west (June 07, 2019).

Photo 5. Wetland 1A, General site. View to the east. (June 07, 2019).

Photo 7. Wetland 1A, General site. View to the north. (June 07, 2019).

Photo 6. Wetland 1A, General site. View to the south. (June 07, 2019).

Photo 8. General infield area. View to the west. (June 07, 2019).

Photo 9. Wetland 1B, General site. View to the northwest. (June 07, 2019).

Photo 11. General site. View to the north. (June 06, 2019).

Photo 10. General site. View to the west. (June 06, 2019).

Photo 12. General site. View to the west. (June 06, 2019).

Photo 13. General site. View to the north. (June 06, 2019).

Photo 14. General site. View to the southwest. (June 06, 2019).

Photo 15. Wetland 2, General site. View to the east. (June 07, 2019).

Photo 16. Wetland 2, Culvert headwall.. View to the east. (June 07, 2019).

Photo 17. Wetland 2, General site. View to the west. (June 07, 2019).

Photo 18. Wetland 3, Data points 3 and 4. View to the south. (Aug 19, 2019).

Photo 21. Wetland 3, Central drainage, General site. View to the east. (Aug 19, 2019).

Photo 22. Wetland 3, Data point 5. View to the south. (Aug 19, 2019).

Photo 23. Wetland 3, Wetland boundary and data point 5. View to the north. (Aug 19, 2019).

Photo 25. Wetland 3, Central drainage, General site. View to the west. (Aug 19, 2019).

Photo 26. Wetland 3, North drainage, General site. View to the northwest. (Aug 19, 2019).

Photo 27. Wetland 3, South drainage, General site. View to the east. (Aug 19, 2019).

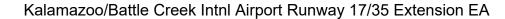


Photo 29. Wetland 3, South drainage, General site. View to the west. (June 07, 2019).

Photo 30. Wetland 3, South drainage, General site. View to the east. (Aug 19, 2019).

Photo 31. Wetland 3, South drainage, General site. View to the west. (Aug 19, 2019).

Photo 32. Wetland 6, General site. View to the west. (Aug 21, 2019).

Photo 33. Wetland 6, Data points 11 and 12. View to the west. (Aug 21, 2019).

Photo 34. Wetland 6, Data points 11 and 12. View to the north. (Aug 21, 2019).

Photo 37. Mann-Hummel Parcel, south field. View to the north. (Aug 20, 2019).

Photo 38. Mann-Hummel Parcel, south field. View to the west. (Aug 20, 2019).

Photo 41. Wetland 4, Culvert. View to the southeast. (Aug 20, 2019).

Photo 42. Wetland 4, General site. View to the west. (Aug 20, 2019).

Photo 45. General site along railroad. View to the north. (Aug 20, 2019).

Photo 46. Wetland 5, Data point 9. View to the east. (Aug 20, 2019).

Photo 47. Wetland 5, Data points 9 and 10. View to the southwest. (Aug 20, 2019).

Photo 48. General site, wooded area. View to the southeast. (Aug 20, 2019).

Appendix I. Delineator Qualifications

BRAUNA HARTZELL, GISP GEOGRAPHIC INFORMATION SYSTEM (GIS) ANALYST/ WETLANDS SCIENTIST EXPERIENCE (GIS)

Brauna Hartzell has more than 20 years of experience applying GIS software and database design techniques to support wetlands and water resources, historic preservation, community planning, transportation, aviation and military planning, and municipal infrastructure and storm water management. She has worked extensively with GIS and mapping software including ArcGIS desktop and ARC/INFO workstation and has specialized experience with 3D Analyst, Network Analyst and Spatial Analyst. She also collects environmental field data using hand-held GPS units and post-processes information for inclusion in databases and use in spatial analyses. Brauna collaborates with personnel from multiple disciplines to solve complex spatial problems through scripting and spatial analysis to deliver results and data for project-specific needs. She utilizes geoprocessing models, Python, and VBA to meet analytical needs of projects.

Brauna is experienced with GIS-related data submittal requirements associated with the Federal Energy Regulatory Commission (FERC) and the Federal Aviation Administration (FAA) data standardization initiatives. She has extensive experience developing Geodatabases with the Spatial Data Standards for Facility, Infrastructure, and Environment (SDSFIE) standard and creating Federal Geographic Data Committee (FGDC)-compliant metadata.

Brauna has specialized experience with using 3D data formats for spatial analysis, contour generation and manipulation, and geospatial modeling. She is adept in the use of LiDAR-derived data and DTMs in support of hydrology and hydraulic analyses. Additionally, she has extensive experience with SSURGO databases and the National Hydrography Dataset.

EXPERIENCE (WETLAND/ENVIRONMENTAL)

Brauna Hartzell has more than fifteen years of experience in wetland delineation, wetland permitting, and restoration projects. She performs wetland and field delineations conforming to current United States Army Corps of Engineers (USACE) including the Northcentral and Northeast Regional Supplement and State standards, designs custom field data collection applications, collects field data using hand-held Global Positioning Systems (GPS) data collectors and tablets, and prepares National Environmental Policy Act (NEPA) documentation. Brauna has successfully guided numerous projects through the Section 404 permitting process.

Brauna has performed numerous wetland delineations in the Upper Midwest. She conducts wetland mitigation site monitoring according to established site-specific assessment protocols, performs vegetation surveys, and analyzes and presents field collected data in graphical and tabular form. She also assists in mitigation site design and construction specifications development.

Areas of Expertise

- Geographic Information Systems (GIS)
- Remote-sensing image processing
- Digital mapping
- Database design
- Programming
- Wetland delineation and permitting

Education

- MS, Environmental Monitoring, 1994, University of Wisconsin, Madison
- BS, Biological Science, 1982, Florida State University, Tallahassee, Florida

Registration/Certification

 Certified GIS Professional (GISP), GIS Certification Institute

Training and Seminars

- Geodatabase Design Concepts, ESRI
- Grasses, Sedges, and Rushes Workshop, University of Wisconsin– LaCrosse, 2017
- Vascular Flora of Wisconsin, University of Wisconsin – Madison, Spring 2002
- Wetlands Ecology, University of Wisconsin – Madison, Spring 2003
- Grasses: Identification and Ecology Workshop, University of Wisconsin – Milwaukee workshop, 2002
- GPS Field Collection Techniques Training Workshop for Trimble GeoXH, Seiler Instruments
- Basic Wetland Delineation Workshop, University of Wisconsin–LaCrosse, 2002
- Basic Hydric Soil Identification Workshop, University of Wisconsin – LaCrosse, 2005
- Advanced Wetland Delineation Workshop, University of Wisconsin – LaCrosse, 2007
- Critical Methods in Delineation, University of Wisconsin-LaCrosse, 2007, 2008, 2009, 2017, 2018, 2019, 2020
- Wildlife Inventory and Monitoring, University of Wisconsin – Milwaukee workshop, 2015

Mead&Hunt

BRAUNA HARTZELL, GISP (CONTINUED) RELATED PROJECTS (WETLANDS)

Wetland Delineations Various Clients Midwest USA

Brauna performed wetland delineations in accordance with the Routine On-Site Method of 1987 United States Army Corps of Engineers (USACE) wetland delineation manual at various sites in Wisconsin and Minnesota. Work included conducting the delineation, documenting field investigations and site conditions, creating wetland boundary maps, and report writing. Delineations were performed for the following projects:

- Pellet Subdivision Middleton, Wisconsin, 2002
- Potter's Creek Subdivision Green Bay, Wisconsin, 2003
- Oak Street Bridge Design La Crosse, Wisconsin, 2003
- Winona Municipal Airport Winona, Minnesota, 2003 & 2009
- State Trunk Highway (STH) 29 Marathon County, Wisconsin, 2003
- Hampton Heights Subdivision Ledgeview, Wisconsin, 2004
- County Trunk Highway (CTH) W Oconto County, Wisconsin, 2004
- Town of Rockland Preliminary Plat Brown County, Wisconsin, 2004
- Mourning Dove Subdivision Oconto County, Wisconsin, 2004
- Cinnamon Ridge Subdivision Suamico, Oconto County, Wisconsin, 2004
- Kenosha Regional Airport Kenosha, Wisconsin, 2005
- County Trunk Highway (CTH) A Lincoln County, Wisconsin
- CTH D Vernon County, Wisconsin, 2006
- Burton Street Beloit, Wisconsin, 2006
- Central Wisconsin Airport Mosinee, Marathon County, Wisconsin, 2008
- State Trunk Highway (STH) 67, Fond du Lac County, Wisconsin, 2011
- Interstate Highway 90/94 Corridor Study, 2014 & 2015
- Ontonagon County Airport, Ontonagon County, Michigan, 2016
- Central Wisconsin Airport Mosinee, Marathon County, Wisconsin, 2016
- Little Rock Lake, Vilas County, Wisconsin, 2016
- Green Bay-Austin Straubel International Airport, 2017
- Lake Elmo Airport, Lake Elmo, Minnesota, 2017
- STH 48/US 53 Interchange, Rice Lake, Wisconsin, 2017
- Waukesha County Airport, Waukesha, Wisconsin, 2017
- I-43 Ozaukee/Milwaukee counties, Wisconsin, 2017
- Crystal Airport, Brooklyn Center, Minnesota, 2018
- STH 164, Waukesha County, Wisconsin, 2018
- STH 173, Juneau and Monroe counties, Wisconsin, 2018
- W. K. Kellogg Airport, Battle Creek, Michigan, 2018
- Ann Arbor Municipal Airport, Ann Arbor, Michigan, 2019
- Kalamazoo Battle Creek International Airport, Kalamazoo, Michigan, 2019
- Ontonagon County Airport, Ontonagon County, Michigan, 2019
- Houghton County Airport, Calumet, Michigan, 2019

Past Employment

- Information Management Systems, Inc.
- Adult Communities Total Services, Inc.
 - Archeological Assessments, Inc.
 - University of Wisconsin Madison

No. of Years With Mead & Hunt

Hired 08/28/1992

No. of Years With Other Firms

Four

BRAUNA HARTZELL, GISP (CONTINUED)

Joint Individual Permit – USACE Approval, 2018 Construction of Production and Logistics Facility Haribo of America

Pleasant Prairie, Wisconsin

The proposed project includes construction of a production and logistics facility with visitor and employee parking, warehousing capability, and other amenities. 0.6 acres of wetland fill will be necessary to achieve project needs. Brauna served as the lead preparer of the individual permit application which included a Practicable Alternatives Analysis.

Wetland Delineation, W.K. Kellogg Airport, 2018 W.K. Kellogg Airport Battle Creek, Michigan

Brauna served as lead wetland delineator in support of an environmental assessment for proposed grading and site improvements to facilitate hangar development and other support services at the airport. The area of interest is approximately 180 acres is size and resulted in the delineation of six wetlands. Wetland types encountered include emergent seasonally-flooded basins and aquatic bed wetlands.

Wetland Delineation, Crystal Airport, 2018 Metropolitan Airports Commission Brooklyn Center, Minnesota

Brauna served as lead wetland delineator in support of alternatives analysis for an environmental assessment for proposed airfield improvements. The area of interest is approximately 50 acres is size spread over eight areas and resulted in the delineation of seven wetlands. Wetland delineated consisted of emergent Type 1 seasonally-flooded basins.

Wetland Delineation, STH 73, Juneau and Monroe counties, 2018 Wisconsin Department of Transportation

Madison, Wisconsin

Brauna served as lead wetland delineator in support of bridge replacements and beam guard upgrades along a 19.4 mile stretch of State Trunk Highway (STH) 173 slated for roadway resurfacing improvements in Juneau and Monroe counties. Wetlands were delineated in association with bridge crossings at three stream crossings and areas of beam guard upgrades. Wetland types encountered include: fresh wet meadows and hardwood and shrub swamps.

Wetland Delineation, STH 164 Waukesha County, 2018 Wisconsin Department of Transportation Madison, Wisconsin

Brauna served as lead wetland delineator managing two delineator teams in support of resurfacing and intersection upgrade alternatives analysis for a 4.6 mile stretch of State Trunk Highway (STH) 164 in Waukesha County. The area of interest is approximately 133 acres is size and resulted in the delineation of 22 wetlands. Wetland types encountered include: fresh wet meadows, hardwood and shrub swamps, and riparian wetlands associated with six major and minor stream crossings.

Joint Section 404 – WCA Permit and Compensatory Mitigation Plan, 2017 Detroit Lakes-Becker County Airport

Detroit Lakes, MN

The proposed project at the Airport includes a relocation of the Runway 13 threshold 1,000 feet to the southeast to provide a 5,200-foot long runway which accommodates an instrument approach with CAT-I minimums. Additionally, a full-length taxiway will be constructed. In total, the proposed project will address airfield design deficiencies,

Mead& Hunt

BRAUNA HARTZELL, GISP (CONTINUED)

improve runway pavement condition, and meet runway length requirements. Approximately 14 acres of wetland fill will be necessary to achieve project needs. A compensatory mitigation plan is included in the permit application. Brauna served as the lead preparer of the permit application.

Wetland Delineation, I-43 Ozaukee/Milwaukee counties, 2017 Wisconsin Department of Transportation Madison, Wisconsin

Brauna served as lead wetland delineator in support of roadway design alternatives analysis for a 1.4 mile stretch of Interstate highway in Ozaukee and Milwaukee counties. The area of interest is approximately 92 acres is size and resulted in the delineation of 61 wetlands. Wetland types encountered include: fresh wet meadows, and hardwood and shrub swamps.

Wetland Delineation and Re-certification, Waukesha County, 2017 Waukesha County Airport

Waukesha, WI

Brauna served as the lead wetland delineator to update and re-certify previously delineated wetland boundaries more than 5 years old. Airfield projects spanning more than 8 years necessitated multiple delineations. Permitting for the current Runway Safety Area (RSA) improvement project required a reassessment of previous wetland boundaries. The boundaries of 12 previous identified wetlands were investigated during field work using hand-held GPS equipment. Three boundaries were updated based on changed environmental conditions and one new wetland was identified in an area not previously investigated. Sampling points and photographs combined to provide documentation of the re-certification.

Wetland Delineation, Lake Elmo Airport, 2017 Metropolitan Airports Commission

Lake Elmo, Minnesota

Brauna served as lead wetland delineator in support of alternatives analysis for an environmental assessment for a proposed runway relocation and associated improvements. The area of interest is approximately 130 acres is size and resulted in the delineation of nine wetlands, one of which was in agricultural production. Wetland types encountered include: shallow marsh, fresh wet meadows, and shrub swamps. A functional assessment was performed using the MN Rapid Assessment Method (MNRAM), updating existing information and assessing newly delineated wetlands.

Wetland Delineation, Green Bay-Austin Straubel International Airport, 2017 Wisconsin Bureau of Aeronautics

Brown County, Wisconsin

Brauna served as lead wetland delineator in support of an environmental assessment for a proposed expansion to the East General Aviation apron and regrading associated with Runway 6/24. The area of interest is approximately 65 acres is size, covering airport infield areas, which resulted in the delineation of 23 emergent wet-meadow wetlands.

Wetland Delineation, STH 48/US 53 Interchange Improvements, 2017 Wisconsin Department of Transportation

Rice Lake, Wisconsin

Brauna served as the lead wetland delineator in support of permitting for interchange improvements to address safety, geometric and operational deficiencies, and improve facilities for non-motorized traffic. The area of interest is approximately 17.5 acres in size and resulted in the delineation of nine wetlands. Wetland types encountered include: fresh wet meadows and ditch wetlands.

BRAUNA HARTZELL, GISP (CONTINUED)

Wetland Delineation, Ontonagon County Airport, 2016 Michigan Bureau of Aeronautics Ontonagon County, Michigan

Brauna served as the lead wetland delineator in support of permitting and on-site mitigation activities related to proposed wetland disturbance in another area of the airport. The area of interest is approximately 19.4 acres in size and resulted in the delineation of 11 wetlands in areas previously in agricultural production. Brauna also performed groundwater well monitoring and data analysis in support of mitigation site design.

Wetland Delineation, Central Wisconsin Airport, 2016 Wisconsin Bureau of Aeronautics

Mosinee, Marathon County, Wisconsin

Brauna served as the lead wetland delineator in support of master planning activities related to determining the viability of shifting Runway 17/35 to the south. The area of interest is approximately 70 acres in size and resulted in the delineation of three large wetlands on airport property and two off-site. The three on-site wetlands experience regular mowing and other maintenance activities as well as show evidence of groundwater contact on a sloping terrain with a seasonal high-water table; off-site wetlands consisted of an alder and a hardwood swamp.

Little Rock Lake Wetland Survey, 2016

National Ecological Observatory Network (NEON), Boulder, CO Vilas County, Wisconsin

Brauna served as the lead wetland scientist in support of site equipment layout investigations for long-term ecological monitoring. A total of four wetlands were delineated within the area of interest at this mesotrophic seepage lake covering about 39 acres. Each proposed equipment installation site was surveyed and wetlands delineated in close proximity to any proposed location.

Interstate Highway (IH) 90/94 Corridor Study, 2013-2017 Wisconsin Department of Transportation (WisDOT) Southwest Region Portage, Juneau, Sauk, and Columbia Counties, Wisconsin

Mead & Hunt is leading a team that is conducting a corridor study of IH 90/94 from US12/WIS 16 to IH39. The project consists of evaluating operational and safety issues, review of the interchanges and ramps within the corridor, and evaluating possible expansion. Environmental studies are being conducted and include; cultural resources surveys, endangered species surveys, contaminated material investigations, noise analysis and wetland delineations. Brauna is a wetland scientist assisting in the delineation, wetland field data collection and mapping. Cost: \$210 million

Wetland Mitigation, Runway 14/32 Safety Area, 2004-2011 WisDOT Bureau of Aeronautics Madison, Wisconsin

Brauna served as project scientist for this reconstruction of a runway safety area and railroad within a state natural area. 140 acres of fen and sedge meadow were restored and enhanced, and 6,000 feet of Starkweather creek was restored with an annually flooded riparian corridor. The project also included restoration of ten acres of swamp forest and 35 acres of upland buffer, plus negotiation of annual management and monitoring to enhance rare plant habitats within Cherokee Fen. The mitigation cost was more than \$1.5 million, with a total project construction cost of \$25 million. Brauna assisted with wetland monitoring and collection of botanical and hydrologic data for compliance. She also monitored for invasive species.

Mead&Hunt

October 10, 2019

Project No. 18105133

Electronic version submitted via e-mail

Pfizer, Inc. 7000 Portage Road Portage, MI 49001 Attn: Mr. Joshua Slater

RE: WETLAND DELINEATION AND REGULATORY STATUS REVIEW REPORT PFIZER PROPERTY – RUNWAY 17/35 EXTENSION AND TAXIWAY C REALIGNMENT SECTION 13, PORTAGE TOWNSHIP KALAMAZOO COUNTY, MICHIGAN

Dear Mr. Slater:

Golder Associates Inc. (Golder) respectfully submits this report to Pfizer Inc. (Pfizer) summarizing the results of a wetland assessment and delineation of the Pfizer property proposed as part of the Kalamazoo/Battle Creek International Airport (Airport) runway extension and taxiway realignment project (Project).

1.0 INTRODUCTION

Golder was retained by Pfizer to delineate wetlands on the Pfizer property that may be regulated under Part 303: Wetlands Protection of Michigan's Natural Resources and Environmental Protection Act (NREPA), 1994 PA 451, as amended (Part 303) and provide an opinion of their regulatory status under Part 303. The wetlands assessment and delineation is required by Mead & Hunt to complete an Environmental Assessment (EA) for the Project. Mead & Hunt is working with the Airport and the Federal Aviation Administration (FAA) to extend a runway approximately 1,150 feet (ft.) which includes the installation of FAA light extensions and the abandonment and relocation of an existing rail line. Elements of the Project (FAA light extensions and the abandonment and relocation of an existing rail line) will extend onto property owned by Pfizer, hereinafter referred to as the Area of Potential Effects (APE). The approximate location of the Project and key elements in relation to the Pfizer property are shown on the Proposed Property map provide by Mead and Hunt (Attachment A). The APE consists of about 76.98 acres of a larger Pfizer parcel comprising a 300 foot buffer around the margin of the proposed Project. The APE excludes the railroad right-of-way (ROW) currently controlled and used by Penn Central Railroad. The area comprised by the railroad ROW was not included in Golder's scope.

2.0 METHODS

2.1 Desktop Information Review

Golder reviewed readily-available public information from the following sources to assess current and recent past conditions on the APE and prepare for the APE visit:

- United States Geological Survey (USGS) topographic map (Figure 1)
- Readily-available aerial imagery (Figures 2 through 7, and viewed online)
- Natural Resources Conservation Service (NRCS) Soil Survey Map (Figure 3)
- National Wetlands Inventory (NWI) Map (Figure 4)

- Michigan Department of Environment, Great Lakes, and Energy (EGLE) Wetland Inventory (Figure 5)
- Federal Emergency Management Agency (FEMA) 100-Year Floodplain Map (Figure 6)

2.2 Field Assessment

Mr. Brian Huebner (Professional Wetland Scientist #2882) of Golder visited the APE and performed the assessment and delineation on April 15, 2019. Field methods followed criteria provided in the 1987 US Army Corps of Engineers (USACE) Wetland Delineation Manual and Regional Supplement: Northcentral and Northeast Region (USACE 1987, USACE 2011). The assessment was conducted during the onset of the growing season as evidenced by newly emerging herbaceous plant growth and buds bursting on trees and shrubs. The assessment was conducted during a period of time characterized by the seasonal high water table. Golder is of the opinion that conditions on the APE were conducive to performing the scope of work for its intended purpose.

Average precipitation for the preceding three-month period near the APE was determined using the NRCS method [*NRCS Engineering Field Handbook Chapter 19, Tools for Wetland Determinations and WETS Table and Rainfall Documentation Worksheet* (Attachment B)]. Using the Rainfall Documentation Worksheet analysis, Golder determined that the field investigation was preceded by a period of normal precipitation.

The wetland delineation was performed by walking over the APE and evaluating prominent land cover, habitat types, and potential wetland areas. Golder established sampling locations within select habitat types and in potential wetland areas. At each sampling location, Golder performed an assessment of vegetation, soil type/characteristics, and surface/subsurface hydrologic indicators to determine the presence and status of wetland-determining characteristics at that location and identify the dominant vegetation types in both the uplands and wetlands across the APE. In accordance with the USACE delineation criteria, an area must have a predominance of hydrophytic vegetation, the presence of hydric soil, and adequate hydrology to be considered a wetland.

Vegetation was identified by flowers, leaves, and/or persistent remains from the previous growing season such as bark, twigs, stems, and reproductive structures. The wetland indicator status for vegetation noted during the evaluation was obtained from the USACE *Northcentral and Northeast 2016 Regional Wetland Plant List*. Soil was evaluated by digging test pits up to 24 inches deep or using a probe manually pushed into the ground to depths of approximately 18 to 24 inches. Soil conditions were evaluated using criteria established by the NRCS (*Field Indicators of Hydric Soils in the United States*), and soil colors were evaluated using a Munsell® Color Chart. Hydrology was evaluated through direct observation of standing water and/or saturated soil and/or indirectly through observation of other primary and/or secondary visual indications.

Areas identified as potential wetlands on the APE were delineated and flagged with high-visibility pink flagging and alpha-numerically coded. Geographic coordinates of delineated boundaries were collected using a Trimble GeoXT global positioning system (GPS) unit with sub-meter accuracy.

3.0 RESULTS

3.1 Information Review

The USGS topographic map (Figure 1) indicated that the ground elevation in the vicinity of the APE ranges between 860 - 870 feet above mean sea level (MSL), with the highest elevations located on the northern end. Surface water drainage on and near the APE has been modified by surrounding development. Upjohn Pond is located on and adjoins the southwest part of the APE. The USGS map indicated the presence of wetlands (marsh symbols) on the south part of the APE.

Aerial imagery from the National Agriculture Imagery Program (Figure 2) and viewed online indicated that in 1950, the north part of the APE was used as farmed land, the central part was used as part of the railroad access to a large industrial facility, and the south part was relatively low-lying, undeveloped meadow and scrub-shrub, and forested habitat. Upjohn Pond did not appear to have been present in 1950. The railroad was present through the middle part of the APE. Sometime between 1950 and 1960, the area of Upjohn Pond appeared to have been dammed and/or excavated to form a lake. Land use on the north part of the APE remained relatively unchanged until sometime between 1989 and 1997, during which time a parking lot had been established on the northwest part of the APE. Land use on the APE remained similar from about 1997 through the present. It appeared there were areas of standing water or saturated soils on the APE in the aerial imagery. Areas of standing water and saturated soils typically appear as relatively darkened areas or areas characterized by differing vegetation types on the aerial photos, while areas of stressed vegetation may appear as contrasting shades of green.

The NRCS soil survey map (Figure 3) indicated five soil map units on the APE. Map units are composed of one or more components or soil types. Table 1 presents a summary of soil map units on the APE and the NRCS hydric rating, which indicates the percentage of a representative map unit that is expected to meet the criteria for hydric soils as determined by the National Technical Committee on Hydric Soils (NTCHS). A hydric soil is defined as a soil that formed under conditions of saturation, flooding, or ponding long enough during the growing season to develop anaerobic conditions in the upper part (typically wetland soils).

Soil Series Map Unit	Soil Series Map Unit Symbol	Hydric Rating (%)
Aquents and Histosols, ponded	Aq	100
Houghton muck, 0 to 1 percent slopes	Hn	100
Kalamazoo loam, 0 to 2 percent slopes	KaA	0
Kalamazoo loam, 2 to 6 percent slopes	KaB	0
Urban land-Kalamazoo complex	UKB	0

Table 1: NRCS Soil Types Mapped on the APE

The presence of these soil types on the APE was generally verified during the APE visit (Section 2.2). Based on visual observation of fill material, abrupt changes in topography, and apparent development history of the APE, Golder is of the opinion that surface and near-surface soils in some areas have been modified by historic filling and grading. NRCS soil surveys are compiled using information at coarse spatial scales, including sources typically based on remote sensing techniques. It is not unusual for the results of fieldwork to differ from conditions depicted by NRCS soil survey, particularly in areas of historic development.

Both the NWI map (Figure 4) and EGLE wetland map (Figure 5) indicated the presence of mapped wetlands on the APE. The extent of wetlands shown on the NWI map was generally consistent with observations during the APE visit (Section 2.2) while the extent of wetlands on the EGLE wetland maps appeared greater than the extents based on field assessment, particularly near the central part of the APE. The NWI and EGLE wetland maps were compiled using information at coarse spatial scales from sources typically based on remote sensing techniques. It is not unusual for the results of fieldwork to identify areas with conditions different from those depicted by the EGLE and NWI maps, particularly in areas of historic development.

The FEMA floodplain map (Figure 6) indicated that the APE is not located within a designated 100-year floodplain.

3.2 Field Assessment

The APE consisted of paved parking areas and developed access roads (northwest and west parts), actively farmed land (northeast part), and undeveloped but historically disturbed meadow and forested habitat (southeast part). There was some fill and miscellaneous debris located on parts of the APE, particularly on the south parts adjacent to Upjohn Pond and along the railroad ROW. The ground surface on the APE was nearly level to undulating with distinct ridges and swales in some areas, particularly adjacent to Upjohn Pond and the railroad ROW. Parts of the APE consisted of relatively low-lying habitat with areas of seasonally ponded surface water evident.

Golder identified three distinct wetland areas on the APE that were characterized by a predominance of wetland plant species, hydric soil indicators, and visible indications of wetland hydrology. These areas were designated as Wetlands A, C, and D. The approximate location of the delineated wetland boundaries in relation to the APE limits are depicted on the attached Wetland Map (Figure 7). Delineated wetland areas on the APE are summarized in Table 2.

Wetland	Area within APE	Wetland Type(s) ¹	Likely Regulatory Status ²			
Identification	Limits (Acres)	wettand Type(s)	Federal	State		
Wetland A	0.049	PEM/SS	Regulated	Regulated		
Wetland C	0.004	PEM	Regulated	Regulated		
Wetland D	6.510	PEM	Regulated	Regulated		
Total	6.563	-				

Table 2: Delineated Wetland Areas on the APE (Excluding the Railroad ROW)

¹Cowardin Classification: PFO = Forested, PSS = Scrub-Shrub, PEM = Emergent

² Final jurisdictional determination is made by the USACE and EGLE. See Section 4.2 for a discussion of likely regulatory status.

Golder observed two apparent wetlands within parts of the railroad ROW. The wetlands were formed in trackside drainage features and their general locations are shown for general reference on the Wetland Map (Figure 7). The limits of wetlands shown within the railroad ROW are for general reference and planning purposes. They were not delineated nor are they included in Table 2 or discussion below.

Typical conditions noted in wetlands on the APE are described below. The scientific names and wetland indicator status of vegetation noted during the delineation follow the common name the first time each plant species is referenced. Photographs depicting typical conditions at the APE during the visit are included as Attachment C. Photographs were taken by Pfizer staff during the APE visit and provided to Golder at a subsequent date. Information regarding conditions in specific upland and wetland sample locations is included on the Wetland Data Forms included as Attachment D.

Wetland A consisted of seasonally inundated and saturated emergent (wet meadow) and scrub-shrub habitat along the edge of Upjohn Lake. Vegetation was characterized by black willow (*Salix nigra*; OBL), sandbar willow (*Salix interior*; OBL), and other willows (*Salix* sp.; assumed FACW to OBL), common reed (*Phalaris arundinaceae*; FACW), blue joint grass (*Calamagrostis canadensis*; OBL), and sedges (*Carex* sp.; assumed FACW to OBL). Soil in the wetland typically consisted of about nine to 12 inches of black to very dark brown gravelly sand with few (less than

two percent) to common (two to 20 percent) yellowish red to strong brown mottles underlain by grayish brown to brown gravelly fill. Soil in the wetland was saturated to the surface with a water table present at about 3 to 6 inches below the ground surface (bgs). Other indications of wetland hydrology included water stained leaves and geomorphic position. Wetland A receives surface water runoff from adjacent uplands and overflow from Upjohn Pond during periods of high water. Excess water from Wetland A flows into Upjohn Pond when water levels in the pond are lower than the wetland.

Wetland C consisted of seasonally saturated, emergent habitat formed in a small basin in historically filled ground. There was no appreciable vegetation in the wetland (a small, sparsely vegetated concave surface). Soil in the wetland typically consisted of about six to nine inches of very dark grayish brown sandy loam with few to common strong brown mottles underlain by gravelly fill. Soil in the wetland was saturated to the surface or inundated with up to about six inches of water. Other indicators of wetland hydrology included water stained leaves, sparsely vegetated concave surface, and geomorphic position in conjunction with a shallow aquitard. Wetland C receives surface water runoff from adjacent uplands. There was no readily apparent location from which surface water flows out of Wetland C, although it appeared that excess surface water from Wetland C would flow into Upjohn Pond during periods of unusually heavy rainfall.

Wetland D consisted of seasonally inundated and saturated emergent (wet meadow) habitat with some trees and shrubs along the edges. Vegetation was characterized by willows and common reed. Soil in the wetland consisted of more than 12 inches of reddish black to black muck or mucky peat. Soil in the wetland was saturated to the surface or inundated with one or more inches of water. Some parts of the wetland were inundated with 12 or more inches of water. Other indications of wetland hydrology included water stained leaves, algae in some areas, and geomorphic position. Wetland D receives surface water runoff from adjacent uplands and Upjohn Pond, as evidenced by a culvert and sluice gate near the south end of the APE. Based on visual observations, it appeared that the water level in Upjohn Pond is higher than the water level in Wetland D and that the sluice gate is periodically opened to flood parts of Wetland D with one or more feet of water. There was no readily apparent location from which surface water flows out of Wetland D. Wetland D is part of a larger wetland complex greater than five acres in size (historically part of Upjohn Pond and adjacent wetlands) that extends beyond the APE limits. Wetland areas that are separated by man-made features, such as roads, railroads, dikes, and levees are considered part of the same wetland complex when determining overall wetland size and connectivity.

Uplands adjacent to Wetlands A and C consisted of forested and meadow habitat formed on historically filled and graded land, as evidenced by abrupt changes in topography and the presence of foreign materials in the soil such as brick, concrete, and metal fragments. Vegetation in these filled areas was characterized by cottonwood (*Populus deltoides*, FAC), dead and dying green ash (*Fraxinus pennsylvanica*; FACW), common buckthorn (*Rhamnus cathartica*; FAC), honeysuckle (*Lonicera tartarica*; FACU), riverbank grape (*Vitis riparia*; FACW), yellow avens (*Geum aleppicum*; FAC), motherwort (*Leonurus cardiaca*; UPL), yarrow (*Achillea millefolium*; FACU), Queen-Anne's-lace (*Daucus carota*; FACU), smooth brome (*Bromus inermis*; FACU), bluegrass (*Poa pratensis*; FACU), and switchgrass (*Panicum virgatum*; FAC). Soil in the filled upland area consisted of mixed very dark brown to brown sandy material with foreign materials present such as brick, concrete, clay pipe and metal fragments. Soil in the upland was not saturated within 24 inches of the surface and there were no other primary or secondary indicators of wetland hydrology.

Uplands adjacent to Wetland D consisted of forested, scrub-shrub, and meadow habitat. The upland area along the west side of Wetland D (between flags D1 through D13) consisted of habitat formed on historically filled land, as evidenced by abrupt changes in topography and observations of adjacent historic excavation. Vegetation in uplands adjacent to Wetland D was characterized by black cherry (*Prunus serotina*; FACU), pin oak (*Quercus palustris*; FACW), red maple (*Acer rubrum*; FAC), cottonwood, box elder (*Acer negundo*; FACW), white birch (*Betula papyrifera*; FACU), willows, blackberry (*Rubus allegheniensis*; FACU), blue joint grass, common reed, and little blue stem (*Schizachyrium scoparium*; FACU). Soil in the filled upland area consisted of 18 to 24 or more inches of black

to dark reddish brown mucky peat or muck. Soil in the upland was not saturated within 24 inches of the surface and there were no other primary or secondary indicators of wetland hydrology. Based on visual observations of historic excavation and grading as well as strongly buttresses roots in areas where the organic soil has subsided, it appeared that Wetland D has been affected by historic drainage activities and that surface water elevations have been lowered from pre-disturbed conditions.

4.0 REGULATORY STATUS REVIEW AND GUIDANCE

4.1 Floodplains

Floodplains are regulated under NREPA, Part 31: Water Resources Protection Floodplain Regulatory Authority. The APE is not located near a mapped floodplain and no permit is required under Part 31 for work on the APE.

4.2 Wetlands

Since 1984, the federal government has authorized the State of Michigan to administer the Clean Water Act (CWA) Section 404 program within its borders, regulating impacts to wetlands and waters of the US (WOUS). Because the program is administered by the State of Michigan, applicants for most wetland permits are required only to apply to the EGLE for approval under Part 303. The following exceptions are areas where the federal government, specifically the USACE, maintains jurisdiction within the state. In these areas, a separate permit must be received from both the USACE and the EGLE. USACE jurisdiction over these waters is maintained under Section 10 of the federal Rivers and Harbors Act of 1899:

- Traditionally navigable waters
 - Great Lake
 - Connecting channels
 - Waters connected to the Great Lake where navigational conditions are maintained
- Wetlands directly adjacent to these waters

None of the wetlands on the APE appear located in or adjacent to a Great Lake or connecting water to the Great Lakes.

The State of Michigan regulates wetlands based on their location and surface connectivity to inland lakes, ponds, streams, and rivers. Per EGLE Rule R 281.921, inland lakes, ponds, streams, and rivers are defined as:

"(i) A river or stream which has definite banks, a bed, and visible evidence of a continued flow or continued occurrence of water.

(ii) A natural or permanent artificial inland lake or impoundment that has definite banks, a bed, visible evidence of a continued occurrence of water, and a surface area of water that is more than five acres. This does not include lakes constructed by excavating or diking dry land and maintained for the sole purpose of cooling or storing water and does not include lagoons used for treating polluted water.

(iii) A natural or permanent artificial pond that has permanent open water with a surface area that is more than one acre, but less than five acres. This does not include ponds constructed

by excavating or diking dry land and maintained for the sole purpose of cooling or storing water and does not include lagoons used for treating polluted water."

Wetlands are regulated under Part 303 if they have a direct surface water connection to or are within 500 feet of a lake, pond, stream, or river as defined above, or are within 1,000 feet of the Great Lakes or Lake St. Clair. Wetlands are also regulated under Part 303 if they do not meet the above guidelines but are greater than five acres in size, have been documented to support state or federal endangered or threatened species, or are rare or imperiled as defined by the state. Wetland areas that are separated by man-made features, such as roads, railroads, dikes, and levees are considered part of the same wetland complex when determining overall wetland size and connectivity.

All of the wetlands noted on the APE are located within 500 feet of Upjohn Lake, which is greater than one acre in size. In addition, Wetland D is part of a larger wetland complex greater than five acres in size.

Based on current provisions of Part 303 and conditions observed during the APE visit and delineation, Golder is of the opinion that all wetlands on the APE are regulated under Part 303. A permit is required from the EGLE to place fill in, excavate soil from, or otherwise modify the soil and/or hydrology of regulated wetlands.

4.3 Inland Lakes and Streams

The State of Michigan regulates inland lakes and streams under NREPA, Part 301 Inland Lakes and Streams (see Section 3.2 for the definition of inland lakes, ponds, streams, and rivers). Based on the current provisions of Part 301, Golder is of the opinion that Upjohn Pond is regulated under Part 301. A permit is required from the EGLE to place fill in, excavate soil from, or otherwise modify areas below the ordinary high watermark (OHWM) of Upjohn Lake.

The above regulatory guidance is to be used for general planning purposes only. The EGLE has final discretion regarding the delineation and regulatory status of wetlands and water resources on the APE. If confirmation of the delineated wetland boundaries and regulatory status of wetlands and waterbodies on the APE is desired, Golder can coordinate with the EGLE to conduct a Level 3 Wetland Identification through the EGLE Wetland Identification Program (WIP). This process will produce an agency confirmation of wetland regulatory status, location, size, and type that can aid subsequent agency review of related permit applications (if required). The above opinion applies only to the regulatory status and need for permits specific to the issue of wetlands and water resources regulated under the CWA and NREPA. Other permits and approvals may be required for various APE development, improvement, or modification activities.

5.0 CLOSING

Golder's evaluation was performed in accordance with generally accepted procedures for conducting wetland evaluations. Golder makes no representation for a period of time over which this evaluation will remain valid, though a wetland determination or delineation performed or confirmed by the EGLE is typically valid for a period of three years. Golder's conclusion reflects our professional opinion based on conditions present at the time of the evaluation. Discrepancies may arise between current and future evaluation of wetlands on the APE due to changes in land use, vegetation, and/or hydrology. No warranties, implied or expressed, are made. It is expressly understood that Golder assumes no responsibility for reporting to federal, state, or local authority or private parties, information disclosed by this or future phases of work performed at this APE.

Golder is pleased to be of continued service to Pfizer. If you have questions or should you require additional information, please contact Brian Huebner at (989) 439-1070, ext. 13 or bhuebner@golder.com.

Sincerely,

Golder Associates Inc.

Brian J. Huelve

Brian Huebner, PWS Senior Ecologist

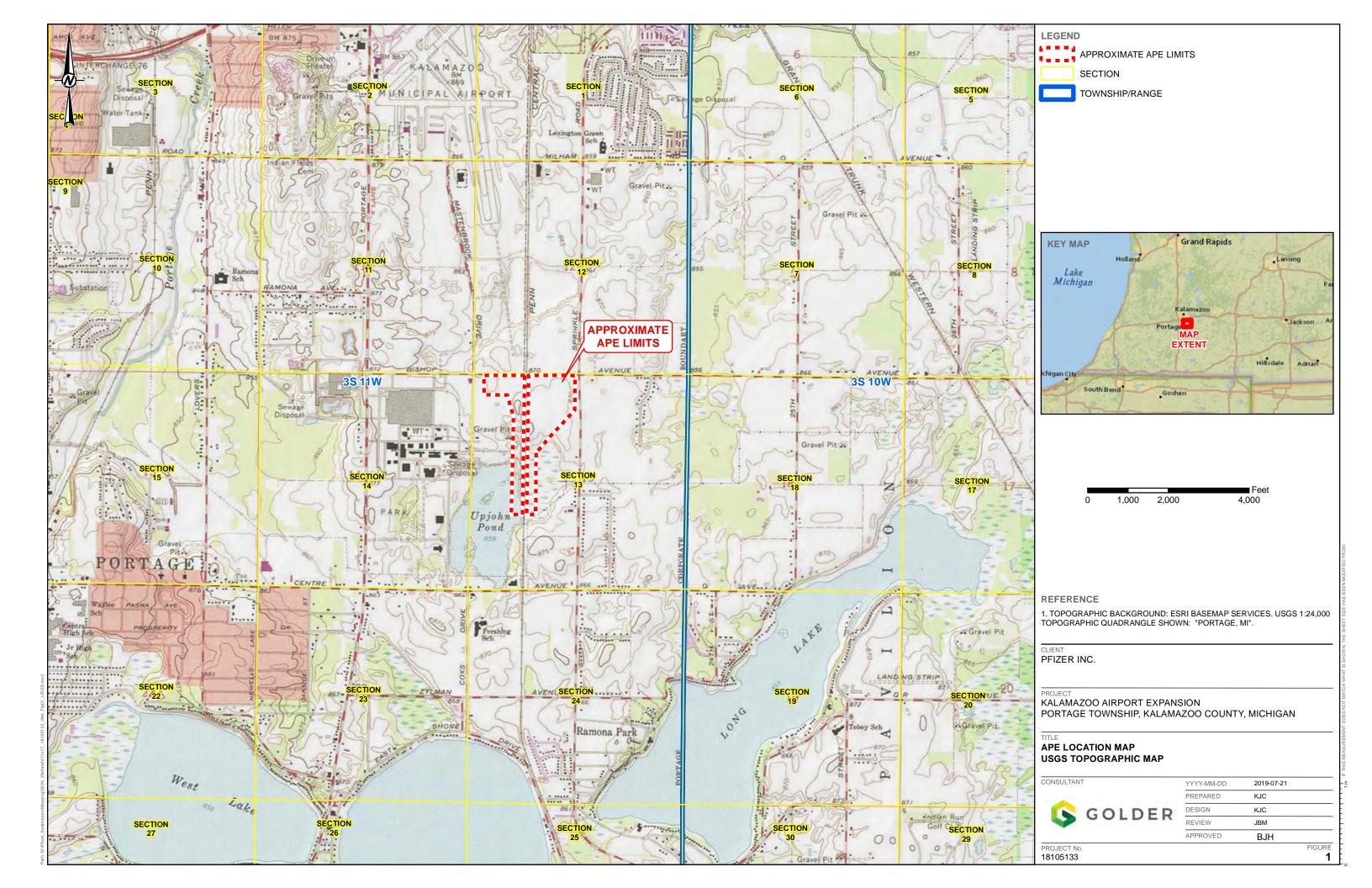
BJH/Ims/jbm

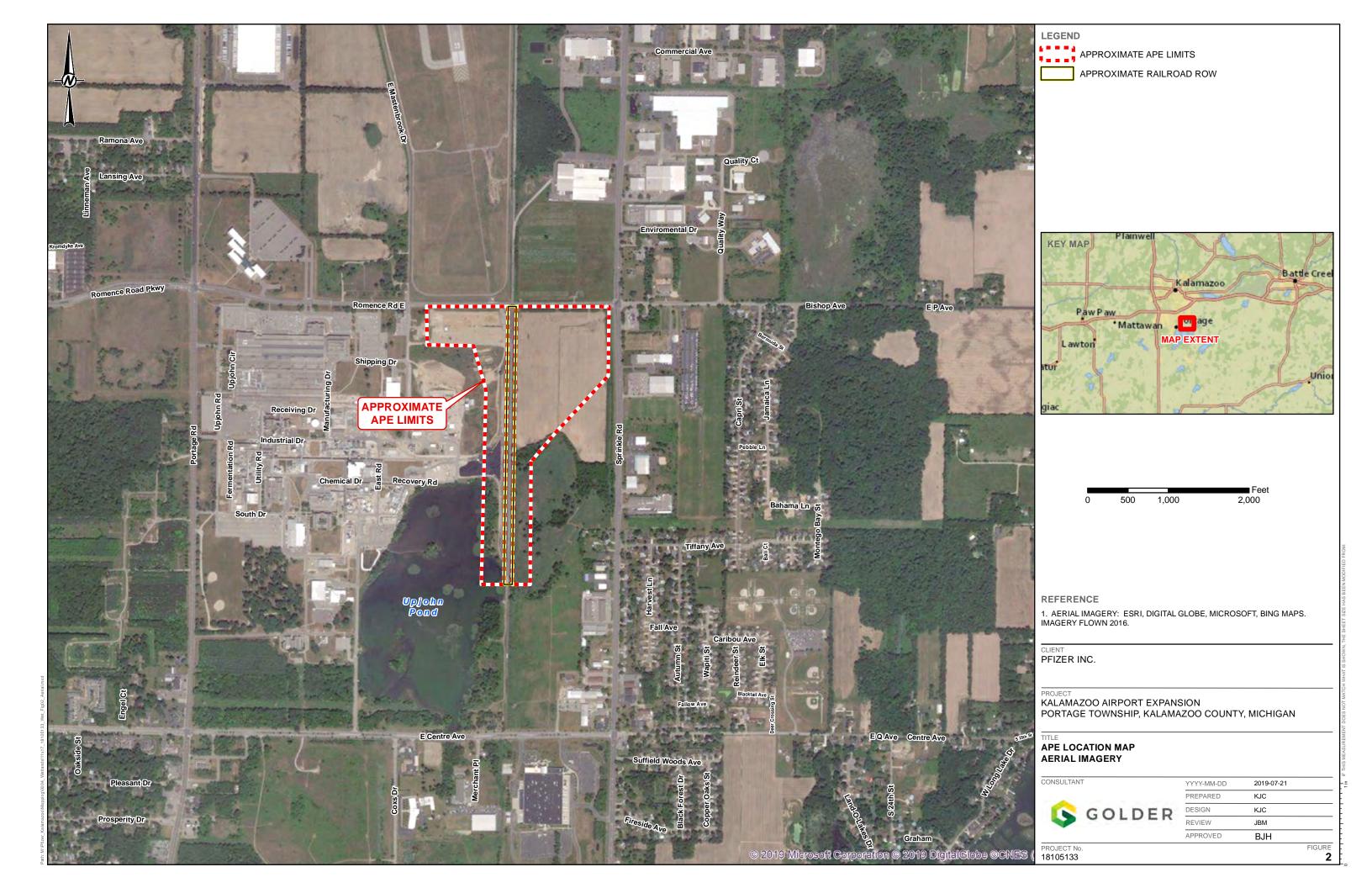
Figures:	Figure 1. APE Location Map (USGS Topographic Map)
	Figure 2. APE Location Map (Aerial Image)
	Figure 3. NRCS Soil Survey Map
	Figure 4. EGLE Wetland Map
	Figure 5. NWI Map
	Figure 6. FEMA Floodplain Map
	Figure 7. Wetland Map

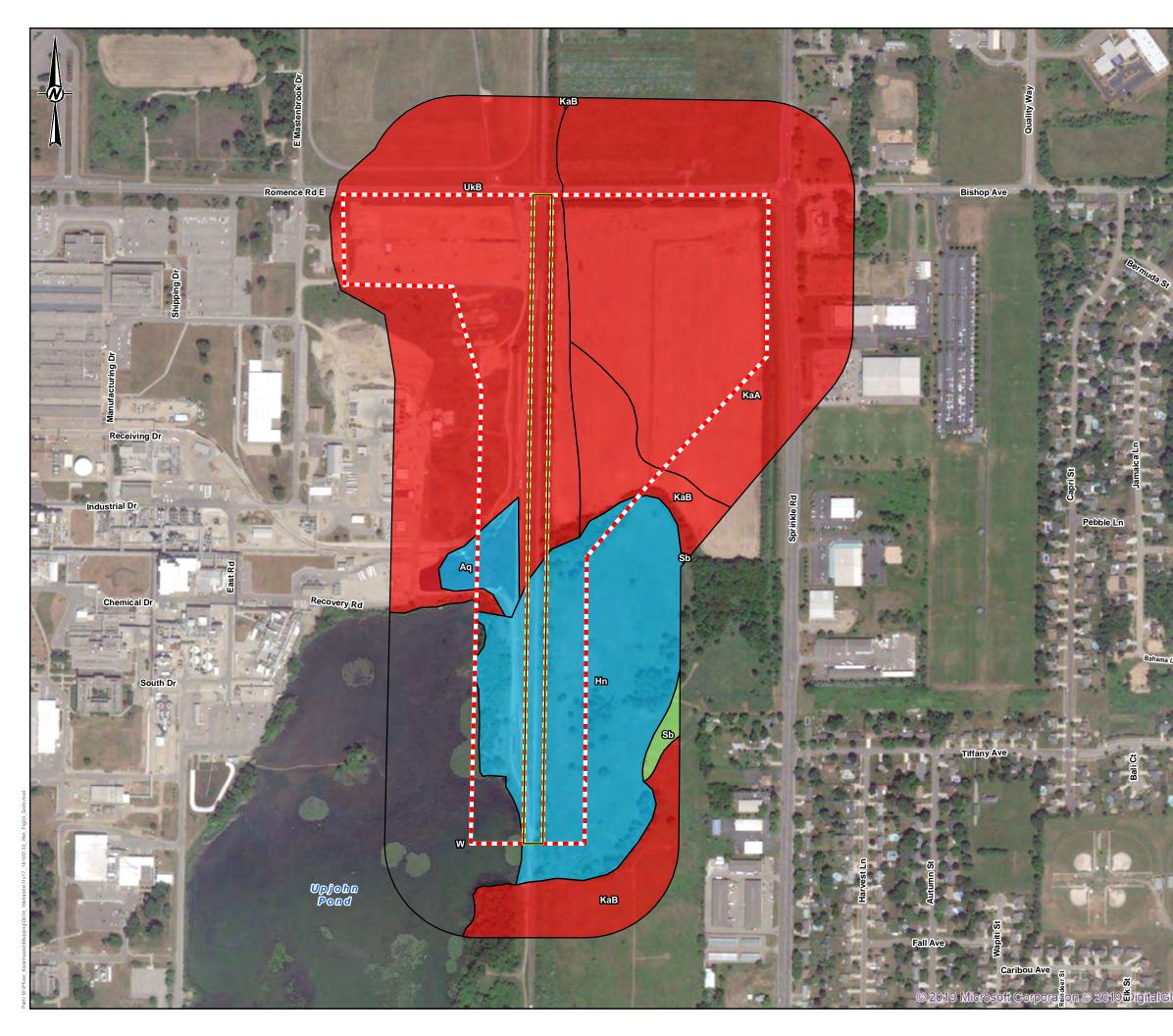
Attachments: Attachment A. Mead and Hunt Proposed Property Map Attachment B. WETS Table and Rainfall Documentation Worksheet Attachment C. APE Photographs Attachment D. Wetland Data Forms

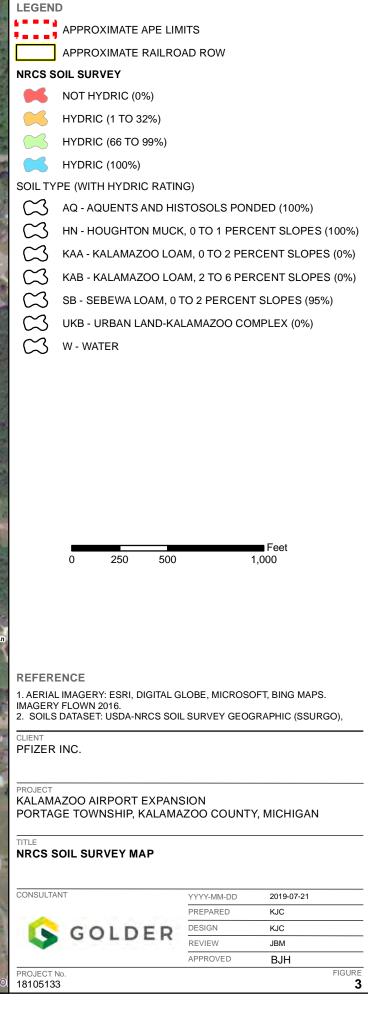
6.0 **REFERENCES**

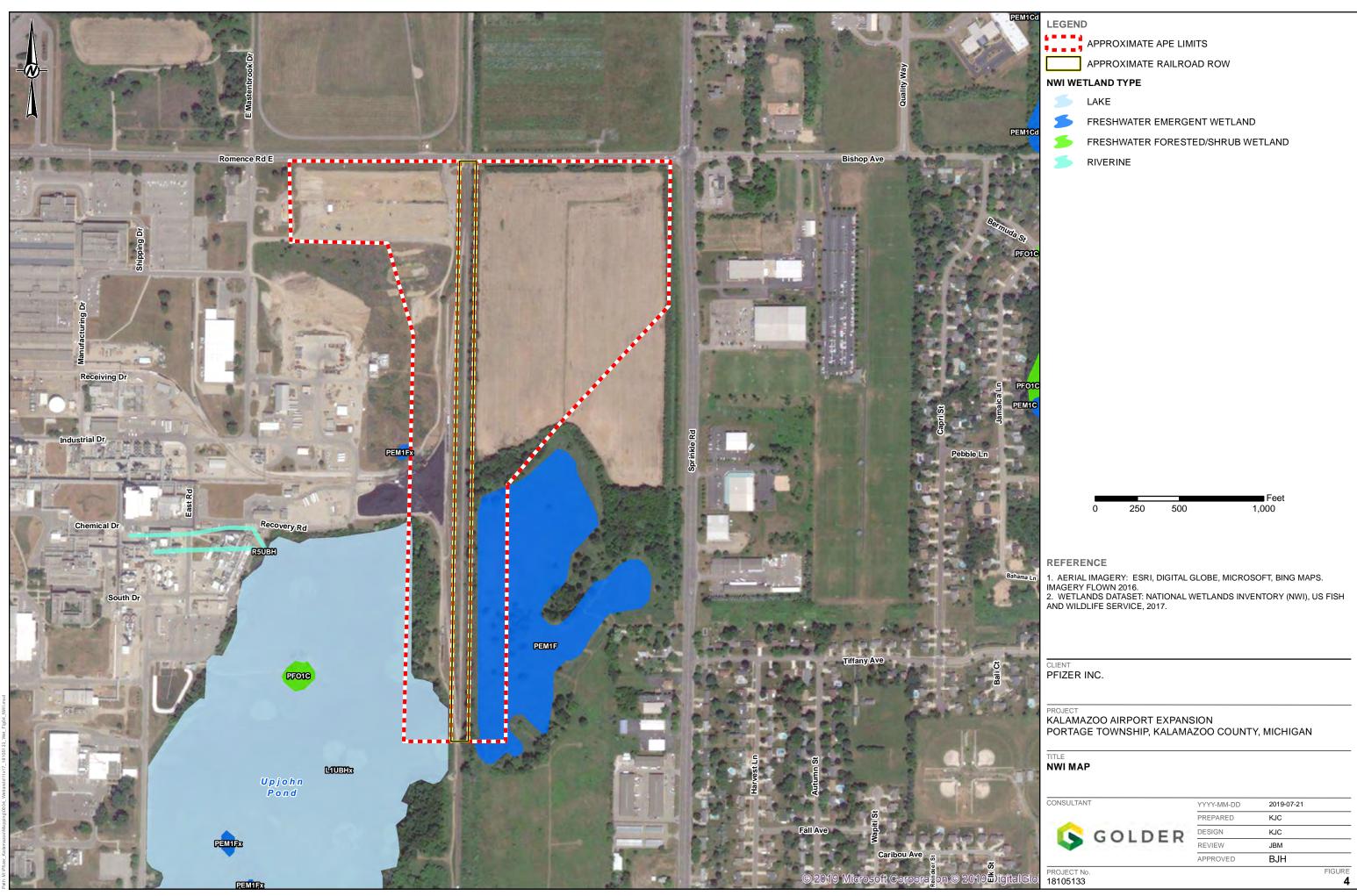
- Environmental Laboratory. (1987). "Corps of Engineers Wetlands Delineation Manual," Technical Report Y-87-1, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
- U.S. Army Corps of Engineers. 2011. Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Northcentral and Northeast Region (Version 2.0), ed. J. S. Wakeley, R. W. Lichvar, C. V. Noble, and J. F. Berkowitz. ERDC/EL TR-12-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.

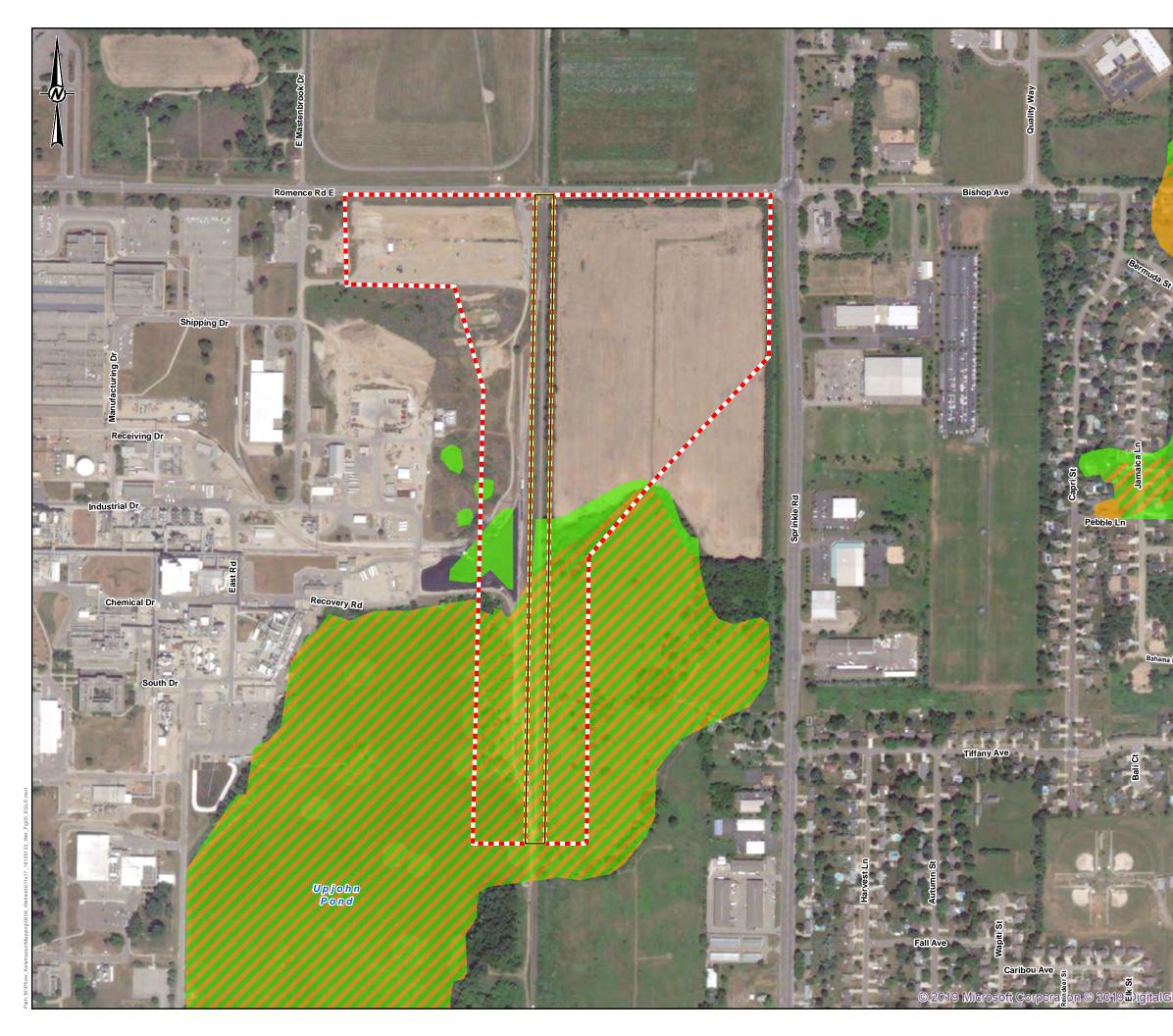

USDA-NRCS. 2010. "Field Indicators of Hydric Soils in the United States (version 7.0)."

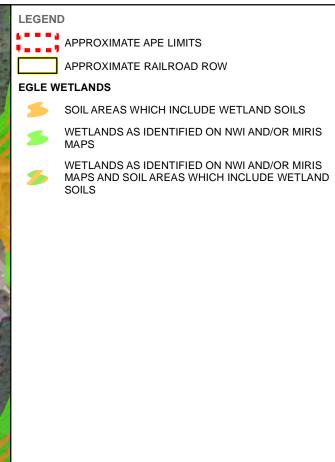

https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_053171.pdf


NRCS. 1997. Engineering Field Handbook. Chapter 19, "Hydrology Tools for Wetland Determination."


https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=17556.wba


Figures





REFERENCE

1. AERIAL IMAGERY: ESRI, DIGITAL GLOBE, MICROSOFT, BING MAPS. IMAGERY FLOWN 2016. 2. WETLANDS DATASET: MICHIGAN DEPARTMENT OF ENVIRONMENT, GREAT LAKES, AND ENERGY.

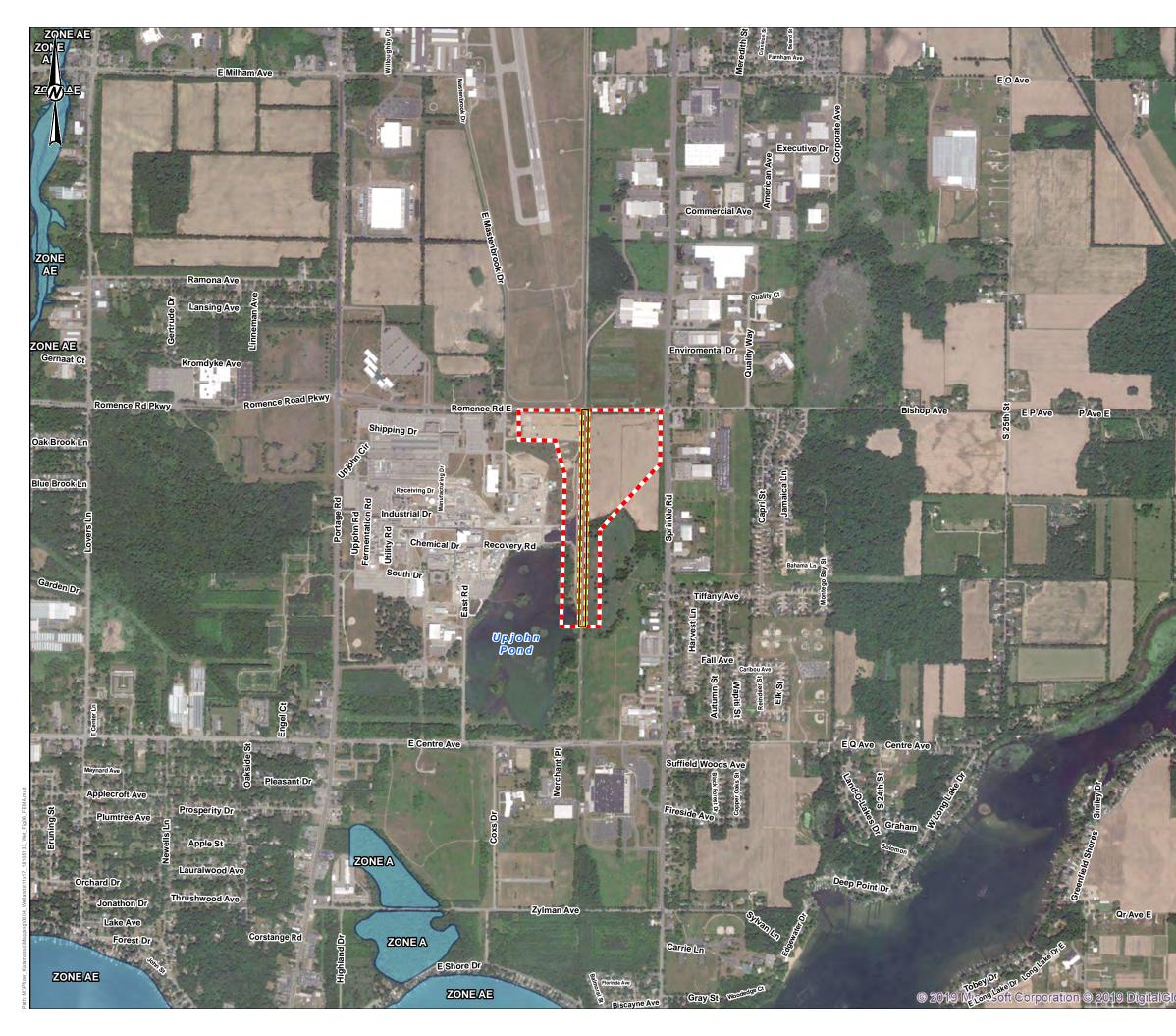
CLIENT

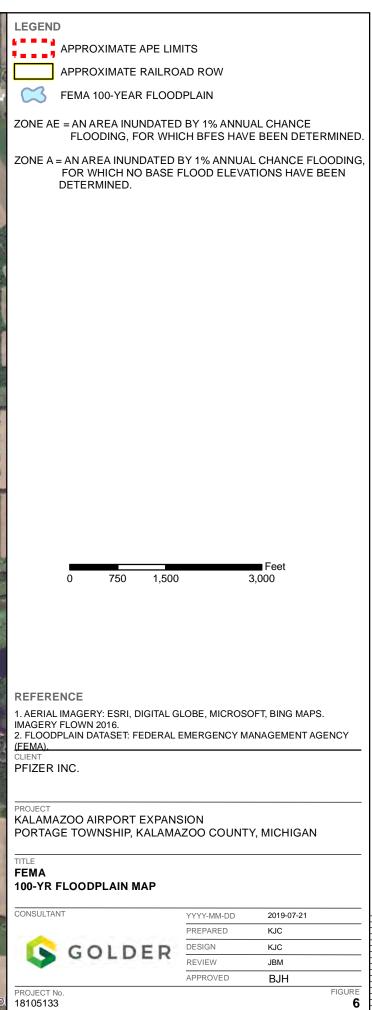
PFIZER INC.

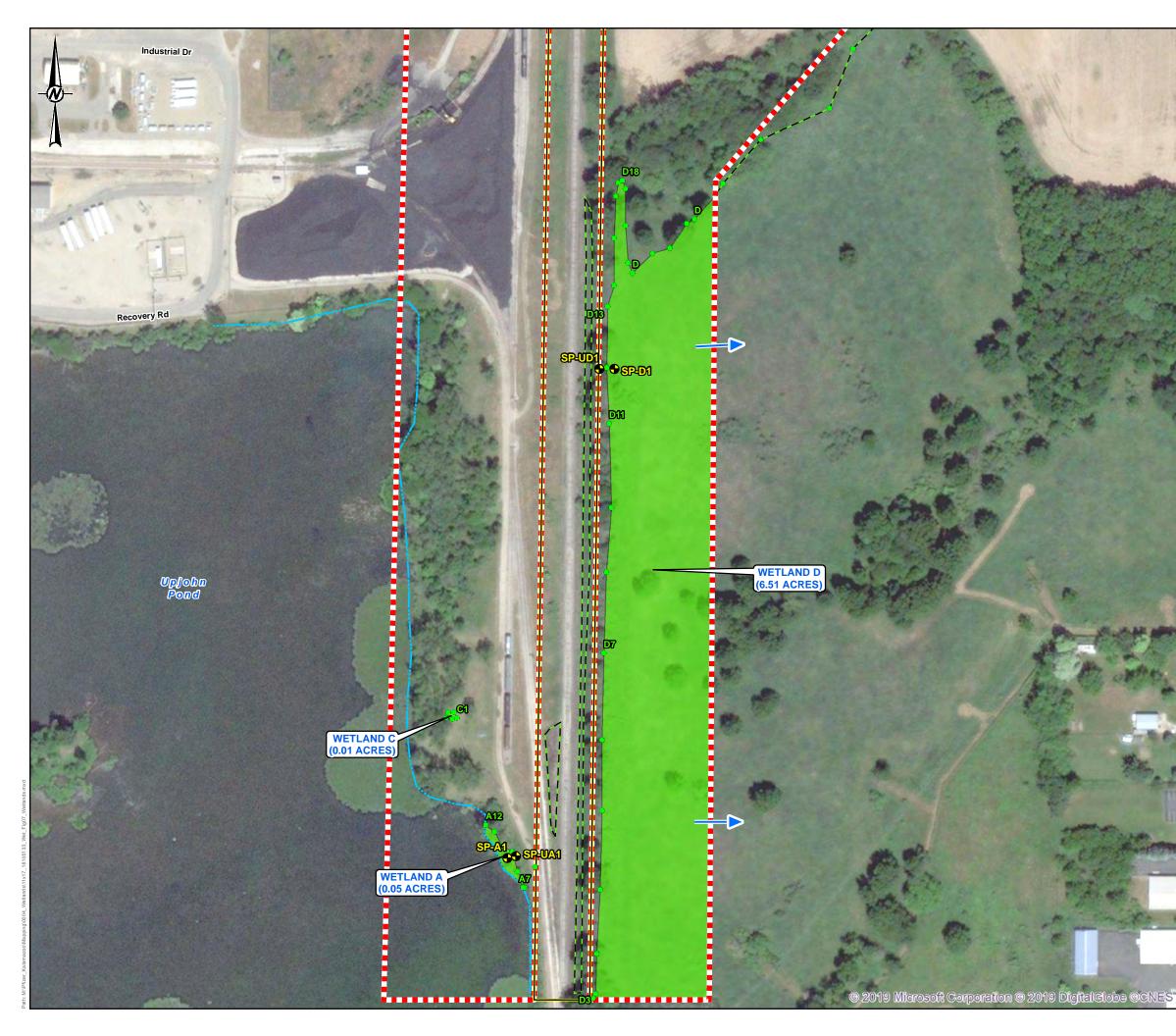
PROJECT KALAMAZOO AIRPORT EXPANSION

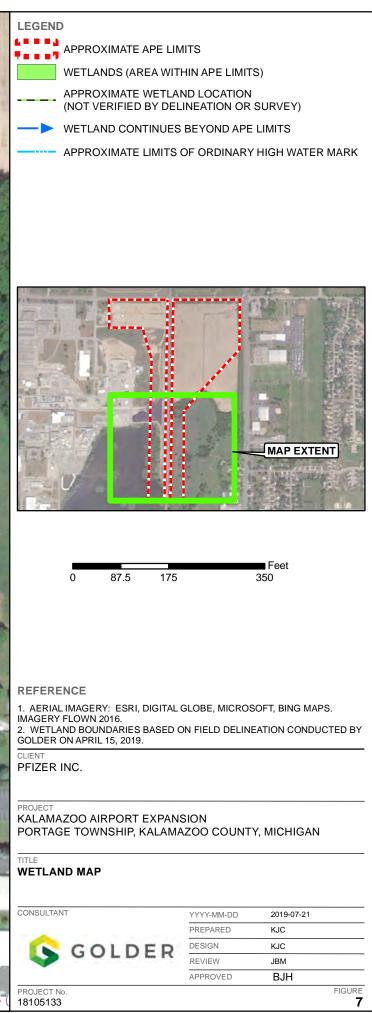
PORTAGE TOWNSHIP, KALAMAZOO COUNTY, MICHIGAN

TITLE EGLE WETLAND MAP

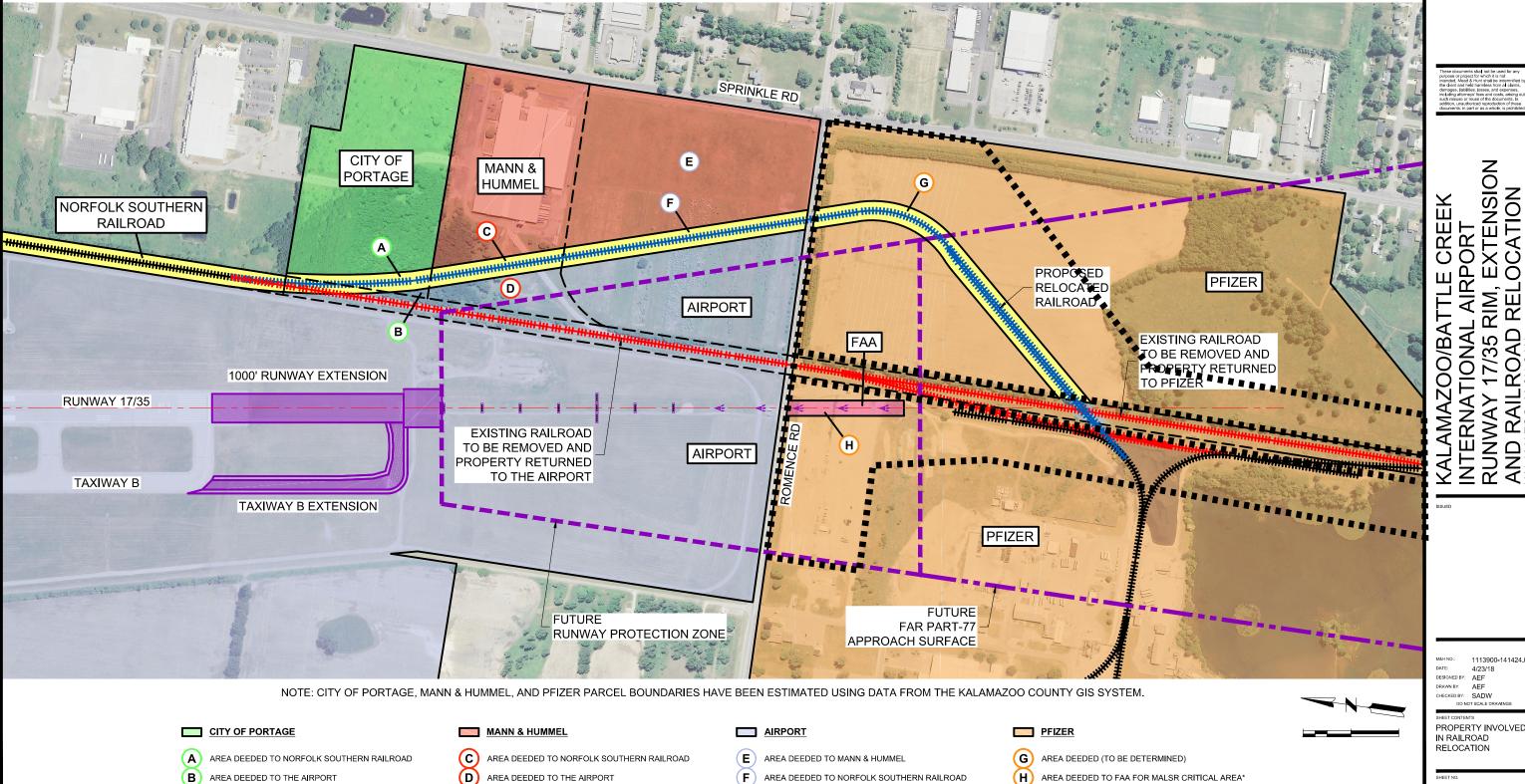

PROJECT No. 18105133


CONSULTANT


🕓 GOLDER


YYYY-MM-DD	2019-07-21
PREPARED	KJC
DESIGN	KJC
REVIEW	JBM
APPROVED	BJH
	FIGURE

5


ATTACHMENT B

Mead and Hunt Proposed Property Map

PROPOSED PROPERTY

WITH PROPOSED RAILROAD

Mead and Hunt, Inc. 2440 Deming Way Middleton, WI 53562 phone: 608-273-6380 meadhunt.com

ш

ᢅ᠌ᠵ

Q₹

₹₹

Ż

 \supset

1113900-141424.01 4/23/18 DESIGNED BY: AEF DRAWN BY: AEF CHECKED BY: SADW

PROPERTY INVOLVED IN RAILROAD RELOCATION

ACTUAL TYPE OF ACQUISTION TO BE DETERMINED

2 OF 2

ATTACHMENT B

WETS Table and Rainfall Documentation Worksheet

WETS Station: GULL LAKE BIOLOGICAL STATION, MI

Requested years: 1988 - 2019

Month	Avg Max Temp	Avg Min Temp	Avg Mean Temp	Avg Precip	30% chance precip less than	30% chance precip more than	Avg number days precip 0. 10 or more	Avg Snowfall	
Jan	33.7	18.5	26.1	2.51	1.78	2.97	7	15.1	
Feb	36.3	18.5	27.4	2.02	1.32	2.42	5	10.8	
Mar	48.3	27.6	37.9	2.44	1.39	2.97	6	4.3	
Apr	61.8	37.7	49.7	3.64	2.63	4.29	7	0.3	
May	73.0	48.3	60.6	4.31	2.63	5.21	8	0.0	
Jun	82.4	57.8	70.1	3.94	2.72	4.70	7	0.0	
Jul	85.7	61.3	73.5	3.81	2.41	4.60	6	0.0	
Aug	83.0	60.1	71.6	4.39	3.18	5.18	7	0.0	
Sep	76.1	52.3	64.2	3.91	2.36	4.74	6	0.0	
Oct	63.7	42.4	53.1	3.93	2.65	4.70	7	0.5	
Nov	49.4	33.3	41.3	3.38	2.29	4.04	7	4.1	
Dec	36.6	22.3	29.4	2.40	1.76	2.82	7	13.4	
Annual:					-	-			
Average	60.8	40.0	50.4	-	-	-	-	-	
Total	-	-	-	40.68			81	48.4	

GROWING SEASON DATES

Years with missing data:	24 deg =	28 deg =	32 deg =
	11	10	9
Years with no occurrence:	24 deg =	28 deg =	32 deg =
	0	0	0
Data years used:	24 deg =	28 deg =	32 deg =
	21	22	23
Probability	24 F or	28 F or	32 F or
	higher	higher	higher
50 percent *	4/5 to	4/20 to	5/4 to 10/
	11/12:	10/30:	12: 161
	221 days	193 days	days
70 percent *	4/3 to	4/13 to	4/29 to
	11/15:	11/6: 207	10/18:
	226 days	days	172 days
* Developt all and a fitter			

* Percent chance of the growing season occurring between the Beginning and Ending dates.

STATS TABLE - total precipitation (inches)													
Yr	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Annl
1929				M3.31	4.12	2.53	2.63	0.71	1. 69	4. 43	1.88	M1. 51	22. 81
1930	1.49	M0.45	M2.97	M1.29	3.38	2.65	1.22	1.50	0. 76	0. 96	2.10	0.77	19. 54
1931	1.18	M0.99	2.50	1.13	2.14	3.68	0.70	2.05	2. 46	1. 78	4.00	M2. 08	24. 69
1932	3.84	1.95	1.53	1.45	M5.04	3.98	4.11	2.58	2. 16	5. 58	2.01	3.10	37. 33
1933	1.56	1.34	1.76	3.19	4.62	4.15	2.61	3.59	M4. 54	6. 81	2.59	2.14	38. 90
1934	1.03	0.40	1.65	2.72	1.78	0.94	0.92	2.20	4. 33	1. 98	3.50	1.37	22. 82
1935	2.30	1.38	3.28	1.55	4.66	4.86	2.72	7.42	3. 11	1. 25	6.10	1.08	39. 71
1936	1.41	1.18	0.62	3.11	0.99	3.76	0.78	3.06	6. 06	4. 87	1.37	2.79	30. 00
1937	2.63	1.57	0.95	5.23	3.31	6.67	2.11	5.24	1.	M1.	1.45	2.29	35.

									89	90			24
1938	1.70	4.38	3.68	1.85	5.50	M3.62	4.26	3.90	2. 77	0. 23	1.79	2.23	35 9
1939	2.38	4.59	1.71	4.27	1.29	5.45	1.90	9.13	1. 88	4. 15	0.99	1.52	39 20
1940	1.96	0.40	1.40	1.82	4.85	7.31	2.22	9.87	1. 11	4. 02	2.47	2.13	39 56
1941	M2.11	M0.85	1.37	M2.11	M2.96	M3.78	M3.22	M1.54	M3. 75	M9. 80	M3. 32	M1. 56	36 37
1942	1.92	M0.88	M5.08	M0.90	M4.03	M5.48	5.38	M5.66	M3. 38	M3. 98	M3. 18	M2. 97	42 8-
1943	M2.13	M2.08	M3.28	3.12	8.76	3.13	5.30	1.86	4. 97	1. 70	2.94	0.33	39 6
1944	1.35	2.38	4.47	3.40	3.71	3.53	0.83	3.87	3. 09	1. 56	2.41	0.99	3 5
1945	0.61	1.23	2.54	3.15	7.69	3.70	2.14	2.06	5. 49	2. 18	2.61	M1. 67	3! 0
1946	1.77	1.65	3.19	1.27	4.92	1.59	0.25	1.62	4. 45	3. 53	3.16	2.96	3(3
1947	2.87	1.09	2.01	7.71	4.79	3.83	2.53	4.94	4. 91	1. 23	2.77	1.76	4(4
1948	M1.34	2.30	5.09	3.97	5.79	M2.41	2.67	1.22	3. 20	0. 51	2.85	2.89	34 2
1949	3.61	2.71	3.39	2.32	2.69	4.12	2.61	3.58	2. 83	2. 73	1.87	2.77	3 2
1950	4.02	3.52	3.28	7.93	0.92	4.90	4.70	1.57	5. 90	0. 66	2.29	2.55	4
1951	2.61	1.64	1.92	3.83	2.89	4.02	3.14	4.01	3. 67	4. 60	3.25	2.54	3 1
1952	5.38	M1.36	1.61	M3.23	5.51	2.26	4.76	3.04	1. 23	0. 22	2.95	1.79	3 3
1953	1.53	0.75	2.14	M2.57	3.20	4.39	2.79	2.90	1. 38	1. 89	1.46	1.07	2 0
1954	1.66	M2.18	2.65	3.38	0.94	M7.69	2.70	3.31	2. 98	8. 67	M2. 49	1.73	4 3
1955	1.37	1.65	1.72	2.81	1.91	4.75	3.48	3.28	M1. 14	M5. 00	M2. 49	0.44	3 0
1956	1.10	1.63	1.90	4.63	3.75	3.67	2.43	1.87	0. 62	0. 24	1.13	0.81	2: 7
1957	2.39	1.23	1.59	4.66	4.29	3.01	4.62	3.05	1. 82	4. 42	2.87	1.56	3 5
1958	1.13	1.18	0.56	2.03	1.39	6.26	3.28	4.29	2. 44	1. 75	M2. 40	0.43	2 ⁻ 1
1959	2.31	2.08	1.49	2.52	2.53	4.38	3.88	4.39	3. 10	4. 62		1.68	3. 8
1960	2.94	1.98	0.56	2.88	5.12	4.78	3.19	2.57	1. 58	1. 23	1.65	0.72	29
1961	0.28	0.51	1.88	3.73	1.73	3.27	2.50	5.15	6. 24	2. 45	1.37	0.76	29
1962	2.35	0.43	0.77	1.77	3.19	3.79	2.79	1.26	3. 54	2. 70	0.39	1.51	24 4
1963	0.82	0.37	M1.37	2.28	4.25	1.54	4.05	1.81	1. 02	0. 84	1.20	0.48	20
1964	0.50	0.32	2.01	3.69	2.44	2.13	2.61	4.93	4. 72	1. 19	2.74	1.43	2
1965	2.05	1.35	1.94	1.89	1.97	3.21	2.21	5.21	5. 18	2. 26	2.04	4.53	3
1966	0.93	1.51	3.25	4.48	3.53	2.22	2.16	5.13	1. 73	1. 03	6.56	3.92	3
1967	2.73	1.61	1.12	4.73	2.34	6.03	2.88	1.90	3. 08	5. 13	3.08	5.01	39
1968	1.66	2.65	0.73	2.95	3.25	6.59	5.37	3.44	3. 17	3. 49	4.49	3.51	4
1969	M1.68	0.28	1.83	4.95	2.79	5.60	4.47	1.56	0. 43	5. 56	3.12	0.72	3:
1970	0.82	0.75	M2.30	3.49	4.09	3.62	6.03	1.63	-+3 3. 24	4. 40	M3. 02	1.55	3, 9
1971	1.09	2.92	M0.90	1.14	2.33	1.63	5.64	1.86	4.	3.		4.60	3:

1972 1.58 1.09 2.34 3.39 3.79 2.70 4.94 6.27 6.9 3. 3.1 4.8 3.61 3.71 6.66 3.63 3.77 1.06 4.9 3.0 3.1 4.8 3.61 3.71 6.66 3.63 3.77 1.06 4.9 3.0 3.0 4.8 2.02 1.07 1.06 4.0 1.06 2.02 3.0 0.45 2.0 0.0 0.66 0.0 1.00 1.00 0.0														
										53	51			2
1974 2.56 3.10 2.41 4.56 1.46 1.56 2.92 3. 5. 2.82 1.76 1975 M1.06 2.40 0.44 6.02 2.74 M0.11 1.0.4 1.6 0.6 3.82 1.8 2.65 3.93 0.45 1.6 2.0 3.41 1.8 2.65 3.93 0.45 1.6 2.0 3.41 1.4 1.1 2.62 2.55 0.53 2.44 1.70 6.6 2.20 1.77 1.7 7. 5.54 0.7 7. 7. 5.54 0.7 7. 7. 5.54 0.7 7. 7. 5.54 0.7 7.	1972	1.58	1.09	2.34	3.39	3.79	2.70	4.94	6.27			2.31	4.63	42 29
1975 M108 2.40 2.69 6.48 6.02 2.74 M013 10.43 1.8 9.5 3.6 4.2 1976 2.02 1.37 M247 4.33 3.25 2.66 3.33 0.45 3.8 3.24 2.14 1977 2.35 0.53 2.15 3.99 1.06 4.08 1.84 1.70 5.8 3.2 5.5 3.44 1.70 5.8 3.2 2.5 1.97 1979 M2.05 1.57 2.95 4.80 2.27 9.28 4.49 T 3.6 5.2 1.57 3.7 2.5 5.0 5.44 1.91 2.66 2.17 1.9 1.5 5.2 5.0 5.44 1.91 2.66 2.34 3.1 2.6 2.20 3.4 1.05 6.9 3.2 2.2 5.8 3.9 3.00 4.55 0.27 3.34 1.05 6.0 3.3 2.2 5.8 3.9 3.1 <td< td=""><td></td><td></td><td>1.48</td><td>3.61</td><td>3.71</td><td>6.06</td><td>3.63</td><td>3.77</td><td>1.95</td><td></td><td></td><td>3.68</td><td>2.70</td><td>39 53</td></td<>			1.48	3.61	3.71	6.06	3.63	3.77	1.95			3.68	2.70	39 53
1000 2002 1.97 4.33 2.265 2.86 3.93 0.46 2.8 3.8 2.3 3.7 3.8 3.8 2.3 3.7 3.8 1.47 3.41 3.17 3.41 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.8 3.7 3.7 3.7	1974	2.36	3.10	3.91	4.95	3.44	3.63	1.36	2.92			2.92	1.26	34 83
	1975	M1.08	2.40	2.09	6.48	6.02	2.74	M0.13	10.43			3.06	4.52	41 74
1978 4.11 0.84 1.17 2.82 2.05 6.53 2.44 1.70 5.8 3.7 2.65 5.83 2.44 5.10 2.64 3.7 2.65 5.33 2.44 5.18 5.21 6.71 3.7 2.6 5.44 3.7 2.6 5.44 3.7 2.6 3.33 2.44 5.18 5.21 5.71 3.7 3.6 3.7 3.7 3.6 3.7 3.7 3.6 3.7 3.7 3.6 3.7 3.7 3.6 3.7 3	1976	2.02	1.97	M2.47	4.33	3.25	2.86	3.93	0.45				1.38	28 9
1979 N2 05 1.57 2.95 4.80 2.77 9.28 2.28 4.99 T 2.0 5.54 M2.0 1980 0.76 1.92 2.69 3.13 2.44 5.18 6.21 6.71 3.7 2.6 3.7 2.6 3.7 3.7 3.7 3.7 2.8 3.7 3.8 3.7 3.8	1977	2.35	0.53	2.15	3.99	1.06	4.08	1.84	5.51			3.34	2.14	33 5
1980 0.76 1.92 2.69 3.13 2.44 5.18 5.21 5.71 8.7 6.7 <t< td=""><td>1978</td><td>4.11</td><td>0.34</td><td>1.17</td><td>2.82</td><td>2.95</td><td>6.53</td><td>2.44</td><td>1.70</td><td></td><td></td><td>2.65</td><td>5.39</td><td>3 2</td></t<>	1978	4.11	0.34	1.17	2.82	2.95	6.53	2.44	1.70			2.65	5.39	3 2
1981 0.54 M224 1.02 6.28 3.44 4.27 1.69 3.67 6.7 3.2 6.7 3.2 1.72 6.7 3.2 1.72 6.7 3.2 1.72 6.7 3.2 1.72 6.7 3.2 1.72 6.7 3.2 1.72 6.7 3.2 1.72 6.7 3.2 1.72 6.7 3.37 1.72 2.73 3.41 1.41 2.42 2.73 3.41 2.43 2.4 3.71 2.93 3.73 2.72 3.34 1.05 6.7 3.2 2.5 5.00 5.00 7.72 4.60 4.31 2.4 3.71 2.93 7.72 4.60 3.3 2.72 3.34 1.71 3.33 1.77 3.33 1.77 4.42 3.60 7.72 4.60 4.31 2.3 2.41 3.10 2.33 2.11 1.41 1.44 1.77 3.3 5.7 2.71 2.71 2.71 2.71 2.71 2.71<	1979	M2.05	1.57	2.95	4.80	2.37	9.28	2.28	4.99	Т		5.54		4) 9
1982 2.79 M1.10 4.67 1.87 4.01 4.15 4.26 2.17 1.8 2.4 3.7 2.9 3.7 2.93 3.7 2.93 3.7 2.93 3.7 2.93 3.7 3.91 2.9 3.7 2.93 3.7 3.9 2.6 2.88 4.33 2.12 5.8 3.81 2.30 3.31 1.76 4.62 4.21 2.1 5.6 6.13 M2.70 M3.72 5.08 3.88 4.33 1.76 4.62 4.21 2.6 6.13 M2.70 M3.72 5.08 3.88 4.33 1.76 4.62 4.21 2.6 6.13 M2.70 M3.72 0.09 1.52 2.36 1.33 2.01 M2.56 6.94 5.8 2.8 2.41 5.9 2.41 5.9 2.41 5.9 2.41 5.9 2.41 5.9 2.41 5.9 2.41 5.9 2.41 5.9 2.41 5.9 4.41 1.61 <th< td=""><td>1980</td><td>0.76</td><td>1.92</td><td>2.69</td><td>3.13</td><td>2.44</td><td>5.18</td><td>5.21</td><td>5.71</td><td></td><td></td><td>1.25</td><td></td><td>3 6</td></th<>	1980	0.76	1.92	2.69	3.13	2.44	5.18	5.21	5.71			1.25		3 6
1983 0.98 1.26 3.25 5.00 5.44 1.91 2.86 2.88 4.3 2.4 8.7 2.93 2.4 1984 M0.61 1.17 3.04 3.09 4.55 0.27 3.34 1.05 6.7 5.8 2.52 5.84 3 1985 M2.70 M3.7 5.08 3.68 4.33 1.76 4.62 4.21 2.1 5.8 6.13 M2.7 1986 0.78 M3.33 1.78 4.42 3.60 M7.27 4.60 9.9 3.7 0.49 1.1 1987 1.16 0.09 1.52 2.36 1.33 2.01 M2.70 4.53 .53 1.41 1.44 4.17 4.99 6.1 5.3 6.24 .63 5.42 .63 .64 .61 5.3 6.24 .63 .64 .61 .61 .61 .61 .61 .61 .61 .61 .61 .61 .61 <	1981	0.54	M2.24	1.02	6.28	3.44	4.27	1.69	3.67			1.36	1.27	3 8
1984 M0.61 1.17 3.04 3.09 4.55 0.27 3.34 1.06 6.7 8.3 2.52 5.84 3.43 1985 M2.70 M3.72 5.08 3.68 4.33 1.76 4.62 4.21 2. 5. 6.13 M2.70 M3.72 5.08 3.68 4.33 1.76 4.62 4.21 2. 5. 6.13 M2.70 M3.72 5.08 3.03 1.41 1.44 4.17 4.60 9. 3.7 0.49 1.1 4.40 2.35 3.03 1.41 1.44 4.17 4.99 6.1 5.3 5.47 M2.7 1.37 2.68 M1.98 6.00 5.38 2.86 4.32 6.6 1.6 M.9 4.6 M.9 4.7 1.63 3.37 5.6 7.7 M2.7	1982	2.79	M1.10	4.67	1.87	4.01	4.15	4.26	2.17			5.26	5.28	3 1
1985 M2.70 M3.72 5.08 3.68 4.33 1.76 4.62 4.21 2.1 5.6 6.13 M3.7 1986 0.78 M3.33 1.78 4.42 3.60 M7.27 4.60 8,9 7,7 0.49 1.51 4.42 1987 1.16 0.09 1.52 2.36 1.33 2.01 M2.56 6.04 8,9 7,8 6.42 8,5 5.42 1.6 1.45 1988 1.46 2.35 3.03 1.41 1.44 4.17 4.99 6,8 5,3 5.42 1.5 1.5 1990 2.14 3.11 2.80 3.01 4.71 4.58 2.50 3.47 3,5 6,7 1.76 4.42 M3.3 4.44 M3.4 1.66 3.37 5,8 6,2 4.42 M3.4 4.44 M3.4 4.44 M3.4 4.44 M3.4 4.44 M3.4 4.44 M3.4 4.44 M3.4	1983	0.98	1.26	3.25	5.00	5.44	1.91	2.86	2.88			3.71	2.93	3 7
1986 0.78 M3.33 1.78 4.42 3.60 M7.27 4.60 99 7. 0.49 1.5 0.49 1.5 0.49 1.5 0.49 1.5 0.49 1.5 0.49 1.5 0.49 1.5 0.49 1.5 0.49 1.5 0.41 1.44 4.17 4.99 6.5 5.5 0.41 1.46 1.46 2.35 0.03 1.41 1.44 4.17 4.99 6.5 5.5 5.42 1.62 1.55 1.57 5.37 5.39 2.86 2.86 3.47 3.5 6.9 1.41 1.16 3.41 1.46 1.55 1.57 5.37 5.37 3.39 2.82 5.87 6.21 2.5 3.7 1.77 1.71 7.16 2.61 3.33 3.76 2.69 3.41 1.16 3.3 3.76 2.61 3.33 3.76 2.61 3.33 3.76 2.61 3.33 3.6 2.7 1.41 1.41 <th< td=""><td>1984</td><td>M0.61</td><td>1.17</td><td>3.04</td><td>3.09</td><td>4.55</td><td>0.27</td><td>3.34</td><td>1.05</td><td></td><td></td><td>2.52</td><td>5.84</td><td>3 1</td></th<>	1984	M0.61	1.17	3.04	3.09	4.55	0.27	3.34	1.05			2.52	5.84	3 1
1987 1.16 0.09 1.52 2.36 1.33 2.01 M2.56 6.94 5. 5.3 2.4 5.09 3 1988 1.46 2.35 3.03 1.41 1.44 4.17 4.99 6. 5.3 5.42 1.62 3 1.61 1.46 1.45 3.03 1.41 1.44 4.17 4.99 6. 5.3 5.42 1.62 1.62 1.61	1985	M2.70	M3.72	5.08	3.68	4.33	1.76	4.62	4.21			6.13		4 8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1986	0.78	M3.33	1.78	4.42	3.60		M7.27	4.60			0.49	1.51	4 5
1 1	1987	1.16	0.09	1.52	2.36	1.33	2.01	M2.56	6.94			2.41	5.09	3 1
1990 2.14 3.11 2.80 3.01 4.71 4.58 2.50 3.47 3.5 5.7 5.87 5.87 5.87 5.87 5.87 5.87 5.87 6.21 2.2 7.7 7.0 4.2 8.3 4.2 8.3 4.2 8.3 4.2 8.3 4.2 8.3 4.2 8.3 4.2 8.3 4.2 8.3 4.2 8.3 4.2 8.3 4.2 8.3 4.4 8.3 3.3 4.4 8.3 3.3 4.4 8.3 3.3 4.4 8.3 3.3 4.4 8.3 4.4 8.3 4.4 8.3 4.4 8.3 4.4 8.3 4.4 8.3 4.4 8.3 4.4 8.3 4.4 8.3 4.4 8.3 4.4 8.3 4.4 8.3 4.4 4.3 4.3 4.4 4.3 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4 4.4	1988		1.46	2.35	3.03	1.41	1.44	4.17	4.99			5.42		3 1
1991 1.27 0.58 6.73 5.37 3.39 2.82 5.87 6.21 2.3 7.7 9.0 4.92 1992 M1.36 1.05 2.67 2.86 0.98 1.21 6.03 3.37 5.8 8.42 M3.3 1.05 2.67 2.86 0.98 1.21 6.03 3.37 5.8 8.7 1.42 M3.3 1.05 1.05 2.67 2.86 0.98 1.21 6.03 3.37 5.8 8.7 1.42 M3.3 1.05 1.05 M3.33 3.76 2.66 5.60 M2 8.7 M.9 M2 9.7 M3 7.7 7.3 1.05 M.9 1.05 M3.3 3.76 2.96 5.30 5.05 M2 8.7 M3 7.7 7.3 7.3 7.3 7.3 2.67 1.13 1.61 3.6 M2 8.7 7.7 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 <td< td=""><td>1989</td><td>1.77</td><td>1.37</td><td>2.68</td><td>M1.98</td><td>6.00</td><td>5.38</td><td>2.86</td><td>4.32</td><td></td><td></td><td>4.14</td><td>1.16</td><td>3 8</td></td<>	1989	1.77	1.37	2.68	M1.98	6.00	5.38	2.86	4.32			4.14	1.16	3 8
1992 M1.36 1.05 2.67 2.86 0.98 1.21 6.03 3.37 5.8 87 44 M3.3 33 33 33 5.8 87 44 M3.3 33 33 33 5.2 4.47 M3.3 33 335 5.1 3.3 3.6 1.11 7.16 2.61 3.36 5.3 3.7 5.8 87 44 M3.3 3 1993 M3.52 M0.90 M2.25 4.71 1.71 7.16 2.61 3.36 5.1 3.7 1.41 1.6 3 1994 M2.59 M1.36 1.65 M3.33 3.76 2.96 5.30 5.05 M4.2 8.4 M5.7 M3.7 3.3 3.76 2.96 5.30 5.05 M4.3 3.8 M2.3 M3.7 3.8 M3.7 3.8 M3.7 M3.7 M3.8 M3.7 M3.8 M3.8 1.97 M3.8 M3.8 M3.8 M3.8 M3.9	1990	2.14	3.11	2.80	3.01	4.71	4.58	2.50	3.47			7.61		4 8
1993 M3.52 M0.90 M2.25 A.71 1.71 7.16 2.61 3.36 5. 3.7 1.44 1.68 1.44 3.50 0.86 5.76 6.60 5.64 M1.2 2.8 1.44 3.50 0.86 5.76 6.60 5.64 M1.2 2.8 1.46 3.40 1.44 1994 M2.59 M1.36 1.44 3.50 0.86 5.76 6.60 5.64 M1.2 2.8 1.46 1.44 1.45 1.44 <	1991	1.27	0.58	5.73	5.37	3.39	2.82	5.87	6.21				4.95	4 4
1994M2.59M1.361.443.500.865.766.605.64M1. 2.82.85.01.463.3319952.580.861.65M3.333.762.965.305.05M4. 722.80.8M1. 73.333.762.965.305.05M4. 722.80.86M1. 703.733.702.965.305.05M4. 722.8M5.M1. 703.733.706.211.391.613.83.8M2. 73M3.733.703.706.211.391.613.63.8M2.M3.733.733.701.70M3.655.74.71.85M1. 733.733.703.704.461.70M3.655.74.71.85M1. 733.733.703.704.461.70M3.655.74.71.85M1. 733.733.703.704.461.70M3.655.74.71.85M1. 733.733.703.704.461.70M3.655.7 4.7 1.85M1. 733.733.703.703.704.461.70M3.655.7 4.7 1.85M1.73.733.703.714.714.711.87M3.643.853.764.461.70M3.655.7 4.77 3.744.711.87M3.645.83.757.75.282.015.824.37.72.834.885	1992	M1.36	1.05	2.67	2.86	0.98	1.21	6.03	3.37			4.42		3 3
1995 2.58 0.86 1.65 M3.33 3.76 2.96 5.30 5.05 M2 2 M5 M1 3 1996 M1.37 1.35 0.75 3.70 3.70 6.21 1.39 1.61 35 3 M2 M3 M3 M3 M3 M4 M2 M3 M3 M3 M2 M3 M3 <td< td=""><td>1993</td><td>M3.52</td><td>M0.90</td><td>M2.25</td><td>4.71</td><td>1.71</td><td>7.16</td><td>2.61</td><td>3.36</td><td></td><td></td><td>1.14</td><td>1.16</td><td>3 5</td></td<>	1993	M3.52	M0.90	M2.25	4.71	1.71	7.16	2.61	3.36			1.14	1.16	3 5
1996M1.371.350.753.703.706.211.391.613.63.8M2.M3.3.701997M2.934.41M2.331.524.594.461.70M3.655.72.71.85M1.3.703.701998M4.221.97M3.485.291.942.674.122.332.03.72.10M1.3.72.10M1.3.72.10M1.3.72.10M1.3.72.10M1.3.72.10M1.3.72.10M1.3.72.10M1.3.72.10M1.3.72.10M1.3.72.10M1.3.82.10M1.3.82.10M1.3.82.10M1.3.8 </td <td>1994</td> <td>M2.59</td> <td>M1.36</td> <td>1.44</td> <td>3.50</td> <td>0.86</td> <td>5.76</td> <td>6.60</td> <td>5.64</td> <td></td> <td></td> <td>5.40</td> <td>1.46</td> <td>3[.] 9</td>	1994	M2.59	M1.36	1.44	3.50	0.86	5.76	6.60	5.64			5.40	1.46	3 [.] 9
1996 M1.37 1.35 0.75 3.70 3.70 6.21 1.39 1.61 3. 3. M2. M3. 3. M3.	1995	2.58	0.86	1.65	M3.33	3.76	2.96	5.30	5.05					3 2
1998 M4.22 1.97 M3.48 5.29 1.94 2.67 4.12 2.33 2.0 3.7 2.10 M1. 3.2 1998 M4.11 1.43 1.39 6.31 2.36 4.29 3.24 1.97 2.3 1.0 6.1 0.95 M3. 3.2 1.0 1.0 0.95 M3. 3.2 2000 3.24 1.67 M2.10 4.49 9.14 4.01 4.84 4.63 5.5 2.6 6.8 3.88 5.2 2001 1.07 M3.84 0.91 3.09 7.67 5.28 2.01 5.82 4.9 7.1 2.05 2.80 4.7 2002 M2.30 2.01 2.18 3.25 4.49 2.04 4.29 5.75 1.1 4.7 0.5 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.9 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3	1996	M1.37	1.35	0.75	3.70	3.70	6.21	1.39	1.61					3 2
1999 M4.11 1.43 1.39 6.31 2.36 4.29 3.24 1.97 2.3 1.4 0.95 M3. 3.8 2000 3.24 1.67 M2.10 4.49 9.14 4.01 4.84 4.63 5.6 6.6 6.8 3.88 5.6 2.0 M4. 3.88 3.88 3.88 3.99 7.67 5.28 2.01 5.82 4.3 7.1 2.05 2.80 4.49 2002 M2.30 2.01 2.18 3.25 4.49 2.04 4.29 5.75 1.1 4.7 M2. M2. 3.8	1997	M2.93	4.41	M2.33	1.52	4.59	4.46	1.70	M3.65			1.85		3 ⁻ 5
2000 3.24 1.67 M2.10 4.49 9.14 4.01 4.84 4.63 5.6 66 68 3.88 5.6 20 M4. 3.88 5.6 20 M4. 3.88 5.6 20 M4. 3.88 5.6 66 68 3.88 5.6 20 M4. 3.88 5.6 20 1.07 M3.84 0.91 3.09 7.67 5.28 2.01 5.82 4.9 7.1 2.05 2.80 4.9 2002 M2.30 2.01 2.18 3.25 4.49 2.04 4.29 5.75 1. 4.7 M2. M2.9 3.88 5.9 2.9 M2.8 3.8	1998	M4.22	1.97	M3.48	5.29	1.94	2.67	4.12	2.33			2.10		3 2
2000 3.24 1.67 M2.10 4.49 9.14 4.01 4.84 4.63 5. 2. M4. 3.88 5. 2001 1.07 M3.84 0.91 3.09 7.67 5.28 2.01 5.82 4.9 7.1 2.05 2.80 4.9 2002 M2.30 2.01 2.18 3.25 4.49 2.04 4.29 5.75 1.1 4.7 M2.5 M2. 3.8	1999	M4.11	1.43	1.39	6.31	2.36	4.29	3.24	1.97			0.95		3 8
2002 M2.30 2.01 2.18 3.25 4.49 2.04 4.29 5.75 1. 4. M2.	2000	3.24	1.67	M2.10	4.49	9.14	4.01	4.84	4.63				3.88	5 6
2003 M0.92 M1.12 1.87 M3.04 6.24 2.47 2.92 3.88 5. 2. 6.81 2.51 3. 2004 1.82 1.34 4.61 0.44 9.93 3.85 3.16 M6.66 1. 3. 4.29 2.68 4.61	2001	1.07	M3.84	0.91	3.09	7.67	5.28	2.01	5.82			2.05	2.80	4 1
2003 M0.92 M1.12 1.87 M3.04 6.24 2.47 2.92 3.88 5. 2. 6.81 2.51 3.85 2004 1.82 1.34 4.61 0.44 9.93 3.85 3.16 M6.66 1. 3. 4.29 2.68 4.61	2002	M2.30	2.01	2.18	3.25	4.49	2.04	4.29	5.75					3 9
2004 1.82 1.34 4.61 0.44 9.93 3.85 3.16 M6.66 1. 3. 4.29 2.68 4 72 36 8	2003	M0.92	M1.12	1.87	M3.04	6.24	2.47	2.92	3.88	5.		6.81	2.51	39 5
	2004	1.82	1.34	4.61	0.44	9.93	3.85	3.16	M6.66			4.29	2.68	4: 8
	2005	M4.87	M1.69	M0.24	M0.66	M1.76	M4.50	M1.89	M0.49	M0.	M0.	M2.	M1.	2

									36	14	87	86	33
2006	M3.08	M0.47	M2.14	M2.27	M6.06	M0.43	M4.17	M6.15	M3. 22	M4. 61	M3. 27	M1. 21	37. 08
2007	3.86	M1.22	2.66	3.33	2.54	1.68	0.75					M0. 60	16. 64
2008	M4.24	M3.28	1.96	2.47	1.87	5.90	6.82	0.82	14. 04	3. 53	M1. 48	3.73	50. 14
2009	2.93	M3.07	3.88	5.57	2.49	M6.02	0.51	7.82			0.98	1.67	34. 94
2010	0.86	1.72	1.08	2.87	1.18	M8.08	M5.58		3. 71	1. 78	1.82	1.13	29. 81
2011	M0.93	1.39		M0.00	6.77	2.26	9.15	M3.84	M2. 98	3. 53	4.09	3.81	38. 75
2012	3.26	2.69	4.11	4.23		1.56	1.53	M3.04	M2. 53	M1. 64	M0. 13	M2. 19	26. 91
2013	M3.25		M0.66	8.44	M4.44	M4.02	M4.62	5.36	M0. 96	M2. 57	M3. 64	M2. 40	40. 36
2014	M3.50	2.77	M1.85	3.60	M4.11	M6.10	M3.68	M3.15	M2. 36	4. 04	M3. 59	M1. 37	40. 12
2015	M1.18	M0.60	M0.03	M2.74	M7.30		5.85	5.80	M2. 00	M1. 48	M2. 69	M2. 85	32. 52
2016	M1.83	M0.66	M3.65	3.58	M4.35	1.53	M5.86	M7.57	M1. 40	M3. 37	2.49	M2. 67	38. 96
2017	M4.00	M1.48	5.14	M3.38	3.70	2.19	2.50	2.47	1. 08	12. 15	M4. 29	M1. 57	43. 95
2018	M1.65	5.05	1.87	2.68	8.93	4.47	1.83	6.06	5. 20	5. 26	3.19	M1. 11	47. 30
2019	M2.06	M1.85	M2.66	M0.00									6.57
Notes: Data missing in any													

Notes: Data missing in any month have an "M" flag. A "T" indicates a trace of precipitation.

Data missing for all days in a month or year is blank.

Creation date: 2016-07-22

Date			Insert Date	Lando	wner/Project			Pfizer
Weather Station	ı Gu	ull Lake Biologic	cal Station, MI		State			MI
County	Kalamazoo Growing Season 4/13 to 11/6 (28 d							6 (28 deg/70%)
Photo/obs Date	•		April 15, 2019		Soil Name		See	e wetland report
		Long-ter	m rainfall stat	t istics (from V	VETS table or Condition	State Climato	<u> </u>	Product of
		30% chance	30% chance		Dry, Wet,	Condition	Month Weight	Product of Previous 2
	Month	<	>	Precip	Normal	Value	Value	Columns
1st Prior Month*	March	1.39	2.97	2.66	Ν	2	3	6
2nd Prior Month*	February	1.32	2.42	1.85	Ν	2	2	4
3rd Prior Month*	January	1.78	2.97	2.06	Ν	2	1	2
	*compared t	o photo/observa	ation date				Sum	12
	Note: If sum	n is					-	
	6 - 9	prior period h	as been drier tl	han normal		Condition va Dry =1	lue:	
	10 - 14	prior period h	as been norma	al		Normal =2 Wet =3		
	15 - 18	prior period h	as been wetter	than normal				

NRCS method - Rainfall Documentation Worksheet Hydrology Tools for Wetland Determination NRCS Engineering Field Handbook Chapter 19

Conclusions:

prior period has been normal

ATTACHMENT C

APE Photographs

PFIZER – RUNWAY 17/35 EXTENSION AND TAXIWAY C REALIGNMENT WETLAND DELINEATION KALAMAZOO COUNTY, MICHIGAN

PHOTO 1

Photo taken on by Pfizer staff on April 15, 2019 depicting typical conditions in Wetland A (near flag A9 facing south).

PHOTO 2

Photo taken on by Pfizer staff on April 15, 2019 depicting typical conditions in Wetland C (near flag C9 facing west).

РНОТО 3

Photo taken on by Pfizer staff on April 15, 2019 depicting typical conditions in Wetland D (near flag D4 facing northeast).

PHOTO 4

Photo taken on by Pfizer staff on April 15, 2019 depicting typical conditions in Wetland D (SP-D1).

РНОТО 5

Photo taken on by Pfizer staff on April 15, 2019 depicting typical conditions in wetlands along the railroad tracks (cattails in trackside drainage feature northeast of Wetland A).

РНОТО 6

Photo taken on by Pfizer staff on April 15, 2019 depicting typical conditions in wetlands along the railroad tracks (wet meadow in trackside drainage feature west of Wetland D). Wetland D evident in left side of photo, upland ridge in center, and trackside wetlands in right side.

ATTACHMENT D

Wetland Data Forms

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Pfizer Property	City/County: Portage Twp., Kalamazo	o Co. Sampling Date: 4/15/2019
Applicant/Owner: Pfizer	State:	MI Sampling Point: SP-A1
Investigator(s): Brian Huebner, PWS #2882	Section, Township, Range: S	Sect 13, T 3 S, R 11W
Landform (hillside, terrace, etc.): lacustrine fringe	Local relief (concave, convex, none): nearly l	evel Slope %: 0-1
Subregion (LRR or MLRA): LRR L, MLRA 98 Lat:	see maps Long:	Datum:
Soil Map Unit Name: Houghton muck, 0-1 percent slope	s (Hn) NWI classifi	cation: PEM (mapped L1UBHX)
Are climatic / hydrologic conditions on the site typical for t	his time of year? Yes x No	(If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrology	significantly disturbed? Are "Normal Circumstance	s" present? Yes x No
Are Vegetation, Soil, or Hydrology	naturally problematic? (If needed, explain any ans	swers in Remarks.)
SUMMARY OF FINDINGS – Attach site map	showing sampling point locations, transec	ts, important features, etc.
Hydrophytic Vegetation Present? Yes X Hydric Soil Present? Yes X Wetland Hydrology Present? Yes X	No Is the Sampled Area No within a Wetland? Yes No If yes, optional Wetland Site ID: W	X No Vetland A
Remarks: (Explain alternative procedures here or in a se See wetland report for a descripton of site conditions at t		
HYDROLOGY		

Wetland Hydrology Indicators:	Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is required; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1) x Water-Stained Leaves (B9)	Drainage Patterns (B10)
X High Water Table (A2) Aquatic Fauna (B13)	Moss Trim Lines (B16)
X Saturation (A3) Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1) Hydrogen Sulfide Odor (C1)	Crayfish Burrows (C8)
Sediment Deposits (B2) Oxidized Rhizospheres on Living Roots	(C3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3) Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4) Recent Iron Reduction in Tilled Soils (C	C6) Geomorphic Position (D2)
Iron Deposits (B5) Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7) Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B8)	X FAC-Neutral Test (D5)
Field Observations:	
Surface Water Present? Yes No x Depth (inches):	
Water Table Present? Yes x No Depth (inches): 3	
	Wetland Hydrology Present? Yes X No
	Wetland Hydrology Present? Yes X No
Saturation Present? Yes x No Depth (inches): 0	
Saturation Present? Yes x No Depth (inches): 0 V (includes capillary fringe)	
Saturation Present? Yes x No Depth (inches): 0 V (includes capillary fringe)	
Saturation Present? Yes x No Depth (inches): 0 No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspectio Remarks:	ons), if available:
Saturation Present? Yes x No Depth (inches): 0 No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspectio No Remarks: Remarks: The wetland delneation was conducted during a period of time characterized by the seaso	ons), if available: onal high water table. Rainfall for the three-month period
Saturation Present? Yes x No Depth (inches): 0 No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspectio Remarks:	ons), if available: onal high water table. Rainfall for the three-month period
Saturation Present? Yes x No Depth (inches): 0 No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspectio No Remarks: Remarks: The wetland delneation was conducted during a period of time characterized by the seaso	ons), if available: onal high water table. Rainfall for the three-month period
Saturation Present? Yes x No Depth (inches): 0 No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspectio No Remarks: Remarks: The wetland delneation was conducted during a period of time characterized by the seaso	ons), if available: onal high water table. Rainfall for the three-month period
Saturation Present? Yes x No Depth (inches): 0 No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspectio No Remarks: Remarks: The wetland delneation was conducted during a period of time characterized by the seaso	ons), if available: onal high water table. Rainfall for the three-month period
Saturation Present? Yes x No Depth (inches): 0 No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspectio No Remarks: Remarks: The wetland delneation was conducted during a period of time characterized by the seaso	ons), if available: onal high water table. Rainfall for the three-month period
Saturation Present? Yes x No Depth (inches): 0 No (includes capillary fringe) Describe Recorded Data (stream gauge, monitoring well, aerial photos, previous inspectio No Remarks: Remarks: The wetland delneation was conducted during a period of time characterized by the seaso	ons), if available: onal high water table. Rainfall for the three-month period

VEGETATION – Use scientific names of plants.

Sampling Point: SP-A1

Tree Stratum (Plot size: 30'R)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
	20	Yes	OBL	
Salix nigra 2.				Number of Dominant Species That Are OBL, FACW, or FAC: 4 (A)
3. 4.				Total Number of Dominant Species Across All Strata:4(B)
5. 6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
	20	=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15'R)				OBL species 20 x 1 = 20
1. Salix interior	20	Yes	FACW	FACW species 150 x 2 = 300
2. Salix sp. (cut, assumed FACW)	20	Yes	FACW	FAC species x 3 =6
3.				FACU species 0 x 4 = 0
4.				UPL species 0 x 5 = 0
5.				Column Totals: 172 (A) 326 (B)
6.				Prevalence Index = B/A = 1.90
7.				Hydrophytic Vegetation Indicators:
	40	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5'R)				X 2 - Dominance Test is >50%
1. Phalaris arundinacea	90	Yes	FACW	X 3 - Prevalence Index is $\leq 3.0^1$
2. Carex sp. (assumed FACW)	20	No	FACW	4 - Morphological Adaptations ¹ (Provide supporting
3. Apocynum cannabinum	2	No	FAC	data in Remarks or on a separate sheet)
4.				Problematic Hydrophytic Vegetation ¹ (Explain)
5. 6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	112	=Total Cover		of size, and woody plants less than 3.28 ft tall.
<u>Woody Vine Stratum</u> (Plot size: <u>30'R</u>) 1				Woody vines – All woody vines greater than 3.28 ft in height.
2				
3				Hydrophytic Vegetation
4				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa				
				erging herbaceous vegetation (violets, lake sedge, and aphs depicting typical conditions in wetlands on the site.

Depth	Matrix			x Featu						
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture		Remarks	3
0-6	7.5YR 2.5/1	95	5YR 4/6	5	С	Μ	Sandy	Pro	minent redox cor	ncentrations
6-9	10YR 3/2	100					Sandy		sandy, gravell	y FILL
	- <u></u>									
	Concentration, D=Dep	letion, RN	I=Reduced Matrix, N	MS=Mas	ked San	d Grains.			Lining, M=Matri	
-	Indicators:			o (olematic Hydric	
Histoso	· ,		Polyvalue Belo		ice (S8) (LRR R,			0) (LRR K, L, MI	
	pipedon (A2)		MLRA 149B	,					edox (A16) (LRR	
	istic (A3)		Thin Dark Surf				· · · · · · · · · · · · · · · · · · ·	-	at or Peat (S3) (
	en Sulfide (A4)		High Chroma S			-			w Surface (S8) (L	
	d Layers (A5)		Loamy Mucky			R K, L)			ce (S9) (LRR K,	
	d Below Dark Surface	e (A11)	Loamy Gleyed		(F2)			-	e Masses (F12) (
	ark Surface (A12)		Depleted Matri	ix (F3)					Iplain Soils (F19)	
	Mucky Mineral (S1)		Redox Dark Su	urface (F	-6)		Mes	ic Spodic (1	FA6) (MLRA 144	A, 145, 149B
Sandy C	Gleyed Matrix (S4)		Depleted Dark	Surface	e (F7)			Parent Mat		
X Sandy F	Redox (S5)		Redox Depres	sions (F	8)		Ver	/ Shallow D	ark Surface (F22	2)
Stripped	d Matrix (S6)		Marl (F10) (LR	R K, L)			Oth	er (Explain i	n Remarks)	
x_Dark Su	ırface (S7)									
	of hydrophytic vegetat Layer (if observed):		etland hydrology mi	ust be p	resent, u	nless dist	urbed or problema	atic.		
Type:										
	inches):						Hydric Soil Pr	esent?	Yes X	No
Remarks: This data fo	rm is revised from No	orthcontrol	and Northeast Reg	ional Si	Innlemen	t Version	2.0 to include the	NRCS Field	d Indicators of H	vdric Soils
	2015 Errata. (http://v									
	y abrupt topography							,		,

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Pfizer Property	City/County: Portage Twp., Kalamazoo Co. Sampling Date: 4/15/2019
Applicant/Owner: Pfizer	State: MI Sampling Point: SP-UA1
Investigator(s): Brian Huebner, PWS #2882	Section, Township, Range: Sect 13, T 3 S, R 11W
Landform (hillside, terrace, etc.): backslope near shoulder	Local relief (concave, convex, none): <u>convex</u> Slope %: <u>2-4</u>
Subregion (LRR or MLRA): LRR L, MLRA 98 Lat: see map	os Long: Datum:
Soil Map Unit Name: Houghton muck, 0-1 percent slopes (Hn)	NWI classification: NA
Are climatic / hydrologic conditions on the site typical for this time	of year? Yes x No (If no, explain in Remarks.)
Are Vegetation, Soil, or Hydrologysignifica	ntly disturbed? Are "Normal Circumstances" present? Yes x No
Are Vegetation, Soil, or Hydrologynaturally	v problematic? (If needed, explain any answers in Remarks.)
SUMMARY OF FINDINGS – Attach site map showi	ing sampling point locations, transects, important features, etc.
Hydrophytic Vegetation Present? Yes X No	Is the Sampled Area
Hydric Soil Present? Yes No Wetland Hydrology Present? Yes No	
Remarks: (Explain alternative procedures here or in a separate r See wetland report for a descripton of site conditions at the time	report.)
HYDROLOGY	

Wetland Hydrology Indica	tors:				Secondary Indicators (minimum of two required)
Primary Indicators (minimun	n of one is requi	ired; check all	that apply)		Surface Soil Cracks (B6)
Surface Water (A1)		Water-	Stained Leaves (B9)		Drainage Patterns (B10)
High Water Table (A2)		Aquatio	c Fauna (B13)		Moss Trim Lines (B16)
Saturation (A3)		Marl D	eposits (B15)		Dry-Season Water Table (C2)
Water Marks (B1)		Hydrog	gen Sulfide Odor (C1)		Crayfish Burrows (C8)
Sediment Deposits (B2))	Oxidize	ed Rhizospheres on Living R	oots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)		Preser	nce of Reduced Iron (C4)		Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)		Recent	t Iron Reduction in Tilled Soi	ls (C6)	Geomorphic Position (D2)
Iron Deposits (B5)		Thin M	luck Surface (C7)		Shallow Aquitard (D3)
Inundation Visible on A	erial Imagery (B	7) Other ((Explain in Remarks)		Microtopographic Relief (D4)
Sparsely Vegetated Cor	ncave Surface (B8)			FAC-Neutral Test (D5)
Field Observations:					
Surface Water Present?	Yes	No x	Depth (inches):		
Water Table Present?	Yes	No x	Depth (inches):		
Water Table Present? Saturation Present?	Yes Yes	No <u>x</u> No x	Depth (inches): Depth (inches):	Wetlan	nd Hydrology Present? Yes No X
				Wetlan	nd Hydrology Present? Yes No X
Saturation Present? (includes capillary fringe)	Yes	No <u>x</u>			
Saturation Present? (includes capillary fringe)	Yes	No <u>x</u>	Depth (inches):		
Saturation Present? (includes capillary fringe)	Yes	No <u>x</u>	Depth (inches):		
Saturation Present? (includes capillary fringe)	Yes	No <u>x</u>	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches):	ections), if	available: h water table. Rainfall for the three-month period
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches):	ections), if	available:
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches):	ections), if	available: h water table. Rainfall for the three-month period
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches):	ections), if	available: h water table. Rainfall for the three-month period
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches):	ections), if	available: h water table. Rainfall for the three-month period
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches):	ections), if	available: h water table. Rainfall for the three-month period
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches):	ections), if	available: h water table. Rainfall for the three-month period
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches):	ections), if	available: h water table. Rainfall for the three-month period

VEGETATION – Use scientific names of plants.

Sampling Point: SP-UA1

Tree Stratum (Plot size: 30'R)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.	/0 00101	Openies:	Olaldo	
2.				Number of Dominant Species That Are OBL, FACW, or FAC:3 (A)
3				Total Number of Dominant
4				Species Across All Strata: 5 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 60.0% (A/B)
7				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15'R)				OBL species 0 x 1 = 0
1. Salix interior	10	Yes	FACW	FACW species 15 x 2 = 30
2. Salix sp. (cut, assumed FACW)	5	Yes	FACW	FAC species 10 x 3 = 30
3				FACU species <u>15</u> x 4 = <u>60</u>
4				UPL species 15 x 5 =75
5				Column Totals: 55 (A) 195 (B)
6.				Prevalence Index = $B/A = 3.55$
7.				Hydrophytic Vegetation Indicators:
	15	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5'R)				X 2 - Dominance Test is >50%
1. Asclepias syriaca	10	Yes	UPL	3 - Prevalence Index is ≤3.0 ¹
2. Panicum virgatum	10	Yes	FAC	4 - Morphological Adaptations ¹ (Provide supporting
3. Poa pratensis	10	Yes	FACU	data in Remarks or on a separate sheet)
4. Achillea millefolium	5	No	FACU	Problematic Hydrophytic Vegetation ¹ (Explain)
5. Verbascum thapsus	5	No	UPL	
6.				¹ Indicators of hydric soil and wetland hydrology must be present, unless disturbed or problematic.
7.				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	40	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30'R)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2				
3				Hydrophytic Vegetation
4.				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a separation	rate sheet.)			

Wetland delineation conducted at the onset of the growing season as evidenced by newly emerging herbaceous vegetation (violets, lake sedge, and others) and developing buds on trees and shrubs. See wetland delineation report for photographs depicting typical conditions in wetlands on the site. Although vegetation dominated by FAC or wetter species (50/20 rule), prevalence index >3 indicates strong presence of upland species. Wetland vegetation is based on presence of willow, which can be invasive and grow well in disturbed upland areas (particularly sandbar willow/S. interior).

Profile Des	cription: (Describe	to the de	pth needed to doc	ument t	he indica	ator or c	onfirm the absence o	f indicators.)
Depth	Matrix			x Featur				
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-8	7.5YR 2.5/2	95	7.5YR 4/6	5	С	М	Sandy	Prominent redox concentrations
8-12	10YR 4/3	100					Sandy	sandy, gravelly FILL
		·						
	<u></u>							
	·	·						
		·					·	
		·						
¹ Type: C=C	oncentration, D=Dep	letion, RM	I=Reduced Matrix, N	MS=Mas	ked Sand	d Grains.	² Location: P	L=Pore Lining, M=Matrix.
Hydric Soil								or Problematic Hydric Soils ³ :
Histosol			Polyvalue Belo		ce (S8) (LRR R,		ick (A10) (LRR K, L, MLRA 149B)
	pipedon (A2)		MLRA 149B	,				rairie Redox (A16) (LRR K, L, R)
	istic (A3) en Sulfide (A4)		Thin Dark Surf High Chroma S					icky Peat or Peat (S3) (LRR K, L, R e Below Surface (S8) (LRR K, L)
	d Layers (A5)		Loamy Mucky					k Surface (S9) (LRR K, L)
	d Below Dark Surface	ο (Δ11)	Loamy Gleyed			K IX, ⊑)		nganese Masses (F12) (LRR K, L, R
· · ·	ark Surface (A12)	C (ATT)	Depleted Matri		(12)			nt Floodplain Soils (F19) (MLRA 149
	Aucky Mineral (S1)		Redox Dark Si	. ,	-6)			podic (TA6) (MLRA 144A, 145, 149E
	Gleyed Matrix (S4)		Depleted Dark	`	,			ent Material (F21)
	Redox (S5)		Redox Depres					allow Dark Surface (F22)
	d Matrix (S6)		Marl (F10) (LR		-)			xplain in Remarks)
	Irface (S7)			, _,				· · · · · · · · · · · · · · · · · ·
³ Indicators o	of hydrophytic vegetat	tion and w	etland hydrology m	ust be p	resent, u	nless dist	urbed or problematic.	
	Layer (if observed):							
Type:								
Depth (i	nches):						Hydric Soil Preser	nt? Yes <u>No X</u>
Remarks:								
								CS Field Indicators of Hydric Soils,
								oil in area is fill as evidenced by abro n in distinctly elevated area compare
to adjacent v	1 0 1 7 1		leigh material in son	(DIICK a		ete nagn	ients). Sample locatio	in in distinctly elevated area compare
,								

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Pfizer Property	City	//County: Portage Twp., Kalamazoo Co	Sampling Date: 4/15/2019
Applicant/Owner: Pfizer		State: M	Sampling Point: SP-D1
Investigator(s): Brian Huebner, PWS #2882		Section, Township, Range: Sect	13, T 3 S, R 11W
Landform (hillside, terrace, etc.): footslope	Local relief	f (concave, convex, none): <u>convex</u>	Slope %: 1-2
Subregion (LRR or MLRA): LRR L, MLRA 98 Lat	t: see maps	Long:	Datum:
Soil Map Unit Name: Houghton muck, 0-1 percent slop	pes (Hn)	NWI classification	on: PEM (mapped on NWI)
Are climatic / hydrologic conditions on the site typical for	or this time of year?	Yes <u>x</u> No (If ne	o, explain in Remarks.)
Are Vegetation, Soil, or Hydrology	significantly disturbed?	Are "Normal Circumstances" pr	resent? Yes <u>x</u> No
Are Vegetation, Soil, or Hydrology	naturally problematic?	(If needed, explain any answers	s in Remarks.)
SUMMARY OF FINDINGS – Attach site ma	ap showing samplin	g point locations, transects,	important features, etc.
Hydrophytic Vegetation Present? Yes X	No Is	s the Sampled Area	
Hydric Soil Present? Yes x	No v	vithin a Wetland? Yes X	No
Wetland Hydrology Present? Yes X	K No If	yes, optional Wetland Site ID: Wetla	and D
Remarks: (Explain alternative procedures here or in a	,		
See wetland report for a descripton of site conditions a	at the time of the delineati	on.	

HYDROLOGY

Wetland Hydrology Indicators:		Secondary Indicators (minimum of two required)
Primary Indicators (minimum of one is require	ed; check all that apply)	Surface Soil Cracks (B6)
Surface Water (A1)	Water-Stained Leaves (B9)	Drainage Patterns (B10)
X High Water Table (A2)	Aquatic Fauna (B13)	Moss Trim Lines (B16)
X Saturation (A3)	Marl Deposits (B15)	Dry-Season Water Table (C2)
Water Marks (B1)	Crayfish Burrows (C8)	
Sediment Deposits (B2)	Oxidized Rhizospheres on Living Roots (C	3) Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)	Presence of Reduced Iron (C4)	Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)	Recent Iron Reduction in Tilled Soils (C6)	Geomorphic Position (D2)
Iron Deposits (B5)	Thin Muck Surface (C7)	Shallow Aquitard (D3)
Inundation Visible on Aerial Imagery (B7)	Other (Explain in Remarks)	Microtopographic Relief (D4)
Sparsely Vegetated Concave Surface (B	8)	X FAC-Neutral Test (D5)
Field Observations:		
Surface Water Present? Yes	No x Depth (inches):	
Water Table Present? Yes x	No Depth (inches): 1	
Saturation Present? Yes x	No Depth (inches): 0 We	land Hydrology Present? Yes X No
(includes capillary fringe)		
	- transferration and a final sector and a state of the sector of the sec	
Describe Recorded Data (stream gauge, mor	nitoring well, aerial photos, previous inspections)	, if available:
Describe Recorded Data (stream gauge, mor	nitoring weil, aerial photos, previous inspections)	, if available:
	nitoring well, aerial photos, previous inspections)	, if available:
Remarks:		
Remarks: The wetland delneation was conducted during	g a period of time characterized by the seasonal	high water table. Rainfall for the three-month period
Remarks: The wetland delneation was conducted during		high water table. Rainfall for the three-month period
Remarks: The wetland delneation was conducted during	g a period of time characterized by the seasonal	high water table. Rainfall for the three-month period
Remarks: The wetland delneation was conducted during	g a period of time characterized by the seasonal	high water table. Rainfall for the three-month period
Remarks: The wetland delneation was conducted during	g a period of time characterized by the seasonal	high water table. Rainfall for the three-month period
Remarks: The wetland delneation was conducted during	g a period of time characterized by the seasonal	high water table. Rainfall for the three-month period

VEGETATION – Use scientific names of plants.

Sampling Point: SP-D1

Tree Stratum (Plot size: 30'R)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:
1.	/0 00001	opecies:	Slaius	
2.				Number of Dominant Species That Are OBL, FACW, or FAC: 1 (A)
3				Total Number of Dominant
4				Species Across All Strata: 1 (B)
5				Percent of Dominant Species
6				That Are OBL, FACW, or FAC: 100.0% (A/B)
7.				Prevalence Index worksheet:
		=Total Cover		Total % Cover of: Multiply by:
Sapling/Shrub Stratum (Plot size: 15'R)				OBL species 0 x 1 = 0
1				FACW species 100 x 2 = 200
2.				FAC species 0 x 3 = 0
3.				FACU species 0 x 4 = 0
4.				UPL species $0 \times 5 = 0$
F				Column Totals: 100 (A) 200 (B)
				Prevalence Index = $B/A = 2.00$
o 7.				Hydrophytic Vegetation Indicators:
/··		=Total Cover		1 - Rapid Test for Hydrophytic Vegetation
Herb Stratum (Plot size: 5'R)				X 2 - Dominance Test is >50%
1. Phalaris arundinacea	100	Voc	FACW	X 3 - Prevalence Index is $\leq 3.0^{1}$
	100	Yes	FAGW	$\frac{1}{4}$ - Morphological Adaptations ¹ (Provide supporting
2				data in Remarks or on a separate sheet)
3.				
4				Problematic Hydrophytic Vegetation ¹ (Explain)
5				¹ Indicators of hydric soil and wetland hydrology must
6				be present, unless disturbed or problematic.
7				Definitions of Vegetation Strata:
8				Tree – Woody plants 3 in. (7.6 cm) or more in
9				diameter at breast height (DBH), regardless of height.
10				Sapling/shrub – Woody plants less than 3 in. DBH
11				and greater than or equal to 3.28 ft (1 m) tall.
12				Herb – All herbaceous (non-woody) plants, regardless
	100 =	=Total Cover		of size, and woody plants less than 3.28 ft tall.
Woody Vine Stratum (Plot size: 30'R)				Woody vines – All woody vines greater than 3.28 ft in
1				height.
2.				
3.				Hydrophytic Vegetation
4.				Present? Yes X No
		=Total Cover		
Remarks: (Include photo numbers here or on a sepa	arate sheet.)			
Wetland delineation conducted at the onset of the gro	owing season			erging herbaceous vegetation (violets, lake sedge, and
others) and developing buds on trees and shrubs. So	ee wetland de	elineation repo	ort for photogra	aphs depicting typical conditions in wetlands on the site.

		to the dep				tor or co	onfirm the absence of	indicators.)
Depth	Matrix			x Featur		. 2		
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks
0-18	2.5YR 2.5/1	100					Muck	
						·		
						·		
		···········						
						·	<u> </u>	
						<u> </u>		
						·	<u> </u>	
17			Deduced Metrix				² l a satismu DI	Dana Lining M. Matrix
	oncentration, D=Dep	letion, Rivi	=Reduced Matrix, M	vis=ivias	ked Sand	Grains.		L=Pore Lining, M=Matrix.
Hydric Soil			Daharahan Dah		aa (CO) (I	DD D		or Problematic Hydric Soils ³ :
x Histosol		-	Polyvalue Belo		ce (58) (I	_RR R,		ck (A10) (LRR K, L, MLRA 149B)
	pipedon (A2)		MLRA 149B	,				airie Redox (A16) (LRR K, L, R)
Black Hi		-	Thin Dark Surf					cky Peat or Peat (S3) (LRR K, L, R)
	n Sulfide (A4)	-	High Chroma					e Below Surface (S8) (LRR K, L)
	Layers (A5)	- (0.4.4)	Loamy Mucky			Κ Κ, L)		k Surface (S9) (LRR K, L)
	Below Dark Surface	e (A11)	Loamy Gleyed		F2)			ganese Masses (F12) (LRR K, L, R)
	ark Surface (A12)	-	Depleted Matri		-0)			t Floodplain Soils (F19) (MLRA 149B)
	lucky Mineral (S1)	-	Redox Dark S	•	,			bodic (TA6) (MLRA 144A, 145, 149B)
	leyed Matrix (S4)	-	Depleted Dark					ent Material (F21)
	edox (S5)	-	Redox Depres		8)			allow Dark Surface (F22)
	Matrix (S6)	-	Marl (F10) (LR	(R K, L)			Other (E)	xplain in Remarks)
Dark Su	face (S7)							
3								
			etland hydrology m	ust be pr	resent, ur	iless disti	urbed or problematic.	
	_ayer (if observed):							
Type:								
Depth (ir	nches):						Hydric Soil Presen	t? Yes <u>x</u> No
Remarks:								
This data for	m is revised from No	orthcentral	and Northeast Reg	ional Su	pplement	Version	2.0 to include the NRC	S Field Indicators of Hydric Soils,
Version 7.0,	2015 Errata. (http://v	www.nrcs.u	sda.gov/Internet/F	SE_DOC	CUMENT	S/nrcs142	2p2_051293.docx)	

WETLAND DETERMINATION DATA FORM – Northcentral and Northeast Region

Project/Site: Pfizer Property		City/Co	unty: Portage Twp.,	Kalamazoo Co.	Sampling Date: 4/15/2	2019
Applicant/Owner: Pfizer				State: MI	Sampling Point: SP	-UD1
Investigator(s): Brian Huebner, PWS	S #2882		Section, Township	o, Range: <u>Sect 13, ⁻</u>	T 3 S, R 11W	
Landform (hillside, terrace, etc.):	nillside/summit (fill)	Local relief (co	ncave, convex, none	e): <u>convex</u>	Slope %:	1-3
Subregion (LRR or MLRA): LRR L,	, MLRA 98 Lat: see r	maps	Long:		Datum:	
Soil Map Unit Name: Houghton mu	ck, 0-1 percent slopes (Hr	1)	<u> </u>	WI classification:	NA (mapped as PEM1	F)
Are climatic / hydrologic conditions o	in the site typical for this tim	me of year?	Yes <u>x</u>	No (If no, e:	xplain in Remarks.)	
Are Vegetation, Soil,	, or Hydrologysigni	ficantly disturbed?	Are "Normal Cire	cumstances" prese	ent? Yes <u>x</u> No	
Are Vegetation, Soil,	, or Hydrologynatur	rally problematic?	(If needed, expla	ain any answers in	Remarks.)	
SUMMARY OF FINDINGS –	Attach site map sho	wing sampling p	oint locations,	, transects, imp	portant features,	etc.
Hydrophytic Vegetation Present?	Yes X No	Is the	e Sampled Area			
Hydric Soil Present?	Yes No	x within	n a Wetland?	Yes	No <u>X</u>	
Wetland Hydrology Present?	Yes No	X If yes	, optional Wetland S	Site ID:		
Remarks: (Explain alternative proce						
See wetland report for a descripton	of site conditions at the tir	ne of the delineation.				

HYDROLOGY

Wetland Hydrology Indicat	tors:				Secondary Indicators (minimum of two required)
Primary Indicators (minimun	n of one is requi	ired; check all	I that apply)		Surface Soil Cracks (B6)
Surface Water (A1)		Water-	-Stained Leaves (B9)		Drainage Patterns (B10)
High Water Table (A2)		Aquati	c Fauna (B13)		Moss Trim Lines (B16)
Saturation (A3)		Marl D	eposits (B15)		Dry-Season Water Table (C2)
Water Marks (B1)		Hydrog	gen Sulfide Odor (C1)		Crayfish Burrows (C8)
Sediment Deposits (B2)	1	Oxidize	ed Rhizospheres on Living R	oots (C3)	Saturation Visible on Aerial Imagery (C9)
Drift Deposits (B3)		Preser	nce of Reduced Iron (C4)		Stunted or Stressed Plants (D1)
Algal Mat or Crust (B4)		Recen	t Iron Reduction in Tilled Soi	ls (C6)	Geomorphic Position (D2)
Iron Deposits (B5)		Thin M	luck Surface (C7)		Shallow Aquitard (D3)
Inundation Visible on A	erial Imagery (B	7) Other	(Explain in Remarks)		Microtopographic Relief (D4)
Sparsely Vegetated Cor	ncave Surface (B8)			X FAC-Neutral Test (D5)
Field Observations:					
Surface Water Present?	Yes	No x	Depth (inches):		
Water Table Present?	Yes	No x	Depth (inches):		
Water Table Present? Saturation Present?	Yes Yes	No <u>x</u> No x	Depth (inches):	Wetlar	nd Hydrology Present? Yes No X
				Wetlar	nd Hydrology Present? Yes <u>No X</u>
Saturation Present? (includes capillary fringe)	Yes	No <u>x</u>			
Saturation Present? (includes capillary fringe)	Yes	No <u>x</u>	Depth (inches):		
Saturation Present? (includes capillary fringe)	Yes	No <u>x</u>	Depth (inches):		
Saturation Present? (includes capillary fringe)	Yes	No <u>x</u>	Depth (inches):		
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches): aerial photos, previous insp f time characterized by the se	ections), if	available: h water table. Rainfall for the three-month period
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches): aerial photos, previous insp f time characterized by the se	ections), if	available:
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches): aerial photos, previous insp f time characterized by the se	ections), if	available: h water table. Rainfall for the three-month period
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches): aerial photos, previous insp f time characterized by the se	ections), if	available: h water table. Rainfall for the three-month period
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches): aerial photos, previous insp f time characterized by the se	ections), if	available: h water table. Rainfall for the three-month period
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches): aerial photos, previous insp f time characterized by the se	ections), if	available: h water table. Rainfall for the three-month period
Saturation Present? (includes capillary fringe) Describe Recorded Data (st Remarks: The wetland delneation was	Yes ream gauge, mo	No x onitoring well, ng a period of	Depth (inches): aerial photos, previous insp f time characterized by the se	ections), if	available: h water table. Rainfall for the three-month period

VEGETATION – Use scientific names of plants.

Sampling Point: SP-UD1

Tree Stratum (Plot size: 30'R)	Absolute % Cover	Dominant Species?	Indicator Status	Dominance Test worksheet:				
1. Prunus serotina	20	Yes	FACU					
2. Acer rubrum	30	Yes	FAC	Number of Dominant Species That Are OBL, FACW, or FAC: 4 (A)				
3. Quercus palustris	15	Yes	FACW					
4.				Total Number of DominantSpecies Across All Strata:6(B)				
5.								
6.				Percent of Dominant Species That Are OBL, FACW, or FAC: 66.7% (A/B)				
7.				Prevalence Index worksheet:				
	65	=Total Cover		Total % Cover of: Multiply by:				
Sapling/Shrub Stratum (Plot size: 15'R)				OBL species 0 x 1 = 0				
1. Amelanchier arborea (dead/dying)	10	Yes	FACU	FACW species 45 x 2 = 90				
2.				FAC species 52 x 3 = 156				
3.				FACU species 30 x 4 = 120				
4.				UPL species 0 x 5 = 0				
5.				Column Totals: 127 (A) 366 (B)				
6.				Prevalence Index = B/A = 2.88				
7.				Hydrophytic Vegetation Indicators:				
	10	=Total Cover		1 - Rapid Test for Hydrophytic Vegetation				
Herb Stratum (Plot size: 5'R)				X 2 - Dominance Test is >50%				
1. Phalaris arundinacea	30	Yes	FACW	3 - Prevalence Index is ≤3.0 ¹				
2. Unidentified grass (assumed FAC)	20	Yes	FAC	4 - Morphological Adaptations ¹ (Provide supporting data in Remarks or on a separate sheet)				
3. Viola sororia	2	No	FAC					
4.				Problematic Hydrophytic Vegetation ¹ (Explain)				
5				¹ Indicators of hydric soil and wetland hydrology must				
6				be present, unless disturbed or problematic.				
7				Definitions of Vegetation Strata:				
8			Tree – Woody plants 3 in. (7.6 cm) or more in					
9				diameter at breast height (DBH), regardless of height.				
10				Sapling/shrub – Woody plants less than 3 in. DBH				
11				and greater than or equal to 3.28 ft (1 m) tall.				
12				Herb – All herbaceous (non-woody) plants, regardless				
	52	=Total Cover		of size, and woody plants less than 3.28 ft tall.				
Woody Vine Stratum (Plot size: 30'R)				Woody vines – All woody vines greater than 3.28 ft in				
1				height.				
2				Hudron hutio				
3				Hydrophytic Vegetation				
4				Present? Yes X No				
		=Total Cover						
Remarks: (Include photo numbers here or on a sepa	rate sheet.)							

Wetland delineation conducted at the onset of the growing season as evidenced by newly emerging herbaceous vegetation (violets, lake sedge, and others) and developing buds on trees and shrubs. See wetland delineation report for photographs depicting typical conditions in wetlands on the site. Herbaceous vegetation dominated by "weedy" species (reed canary grass). Area is clearly upland based on topography (sample location on narrow ridge 4 or more feet above the elevation of the adjacent wetlands.

Profile Desc	ription: (Describe	to the de	pth needed to docu	ument t	he indica	ator or c	onfirm the absence	of indicator	rs.)	
Depth	Matrix		Redo	x Featur	res					
(inches)	Color (moist)	%	Color (moist)	%	Type ¹	Loc ²	Texture	Remarks		
0-24	5YR 2.5/2	100					Mucky Peat	Area is	s historic fill	built up with
								organic s	soil from adj	acent wetland.
			·							
¹ Type: C=Co	oncentration, D=Dep	letion, RM	I=Reduced Matrix, N	1S=Mas	ked Sand	d Grains.	² Location:	PL=Pore Lir	ning, M=Mat	rix.
Hydric Soil	Indicators:						Indicators	for Problen	natic Hydrid	c Soils³:
Histosol	(A1)		Polyvalue Belo	w Surfa	ce (S8) (LRR R,	2 cm M	uck (A10) (I	LRR K, L, N	ILRA 149B)
Histic Ep	pipedon (A2)		MLRA 149B)			Coast F	Prairie Redo	x (A16) (LR	R K, L, R)
Black Hi	stic (A3)		Thin Dark Surf	ace (S9)) (LRR R	, MLRA ′	149B) 5 cm M	ucky Peat c	or Peat (S3)	(LRR K, L, R)
Hydroge	n Sulfide (A4)		High Chroma S	Sands (S	611) (LRI	R K, L)	Polyval	ue Below S	urface (S8)	(LRR K, L)
Stratified	I Layers (A5)		Loamy Mucky	Mineral	(F1) (LR	R K, L)	Thin Da	ark Surface	(S9) (LRR 🖌	(, L)
Depleted	Below Dark Surface	e (A11)	Loamy Gleyed	Matrix ((F2)		Iron-Ma	inganese M	asses (F12)	(LRR K, L, R)
Thick Da	ark Surface (A12)		Depleted Matri	x (F3)			Piedmo	nt Floodpla	in Soils (F19	9) (MLRA 149B)
	lucky Mineral (S1)		Redox Dark Su	ırface (F	-6)		Mesic S	Spodic (TA6) (MLRA 14	4A, 145, 149B)
	leyed Matrix (S4)		Depleted Dark	Surface	e (F7)			rent Materia		
Sandy R	Sandy Redox (S5) Redox Depressions (F8)					Very Shallow Dark Surface (F22)				
	Matrix (S6)		Marl (F10) (LR	R K, L)			Other (I	Explain in R	emarks)	
Dark Su	face (S7)									
2										
			etland hydrology mu	ist be pi	resent, u	niess dist	urbed or problematic.			
	_ayer (if observed):									
Type:										
Depth (ir	nches):						Hydric Soil Prese	ent?	Yes	<u>No X</u>
Remarks:							-			
							2.0 to include the NR			
	2015 Errata. (http://v omprised or organic s						2p2_051293.docx). L	Jpland is foi	rmed on a p	rominant, narrov
huge of hir co	Simplised of organics	son presu		in the a	ujacent w	vetianus.				